Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

CD109, a novel TGF-β antagonist, decreases fibrotic responses in a hypoxic wound model.

Winocour S, Vorstenbosch J, Trzeciak A, Lessard L, Philip A.

Exp Dermatol. 2014 Jul;23(7):475-9. doi: 10.1111/exd.12439.

PMID:
24815824
2.

CD109 overexpression ameliorates skin fibrosis in a mouse model of bleomycin-induced scleroderma.

Vorstenbosch J, Al-Ajmi H, Winocour S, Trzeciak A, Lessard L, Philip A.

Arthritis Rheum. 2013 May;65(5):1378-83. doi: 10.1002/art.37907.

3.

Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing.

Vorstenbosch J, Gallant-Behm C, Trzeciak A, Roy S, Mustoe T, Philip A.

Wound Repair Regen. 2013 Mar-Apr;21(2):235-46. doi: 10.1111/wrr.12023. Epub 2013 Feb 25.

PMID:
23438099
4.

CD109, a TGF-β co-receptor, attenuates extracellular matrix production in scleroderma skin fibroblasts.

Man XY, Finnson KW, Baron M, Philip A.

Arthritis Res Ther. 2012 Jun 13;14(3):R144. doi: 10.1186/ar3877.

5.

Overexpression of CD109 in the Epidermis Differentially Regulates ALK1 Versus ALK5 Signaling and Modulates Extracellular Matrix Synthesis in the Skin.

Vorstenbosch J, Nguyen CM, Zhou S, Seo YJ, Siblini A, Finnson KW, Bizet AA, Tran SD, Philip A.

J Invest Dermatol. 2017 Mar;137(3):641-649. doi: 10.1016/j.jid.2016.09.039. Epub 2016 Nov 17.

PMID:
27866969
6.

[Inhibiting scar formation in rat cutaneous wounds by blocking TGF-beta signaling].

Liu W, Chua CH, Wu XL, Wang DR, Yin DM, Cui L, Cao YL, Longaker MT.

Zhonghua Yi Xue Za Zhi. 2003 Jan 10;83(1):31-6. Chinese.

PMID:
12757642
7.

Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair.

Scheid A, Wenger RH, Christina H, Camenisch I, Ferenc A, Stauffer UG, Gassmann M, Meuli M.

Pediatr Surg Int. 2000;16(4):232-6.

PMID:
10898220
8.

CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function.

Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A.

J Cell Biochem. 2012 Jan;113(1):238-46. doi: 10.1002/jcb.23349.

PMID:
21898545
9.

Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis.

Distler JH, Jüngel A, Pileckyte M, Zwerina J, Michel BA, Gay RE, Kowal-Bielecka O, Matucci-Cerinic M, Schett G, Marti HH, Gay S, Distler O.

Arthritis Rheum. 2007 Dec;56(12):4203-15.

10.

Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3.

Scheid A, Wenger RH, Schäffer L, Camenisch I, Distler O, Ferenc A, Cristina H, Ryan HE, Johnson RS, Wagner KF, Stauffer UG, Bauer C, Gassmann M, Meuli M.

FASEB J. 2002 Mar;16(3):411-3. Epub 2002 Jan 14.

PMID:
11790723
11.

Soluble CD109 binds TGF-β and antagonizes TGF-β signalling and responses.

Li C, Hancock MA, Sehgal P, Zhou S, Reinhardt DP, Philip A.

Biochem J. 2016 Mar 1;473(5):537-47. doi: 10.1042/BJ20141488. Epub 2015 Nov 30.

PMID:
26621871
12.

CD109 release from the cell surface in human keratinocytes regulates TGF-β receptor expression, TGF-β signalling and STAT3 activation: relevance to psoriasis.

Litvinov IV, Bizet AA, Binamer Y, Jones DA, Sasseville D, Philip A.

Exp Dermatol. 2011 Aug;20(8):627-32. doi: 10.1111/j.1600-0625.2011.01288.x. Epub 2011 May 4.

PMID:
21539622
13.
14.

Role of elevated plasma transforming growth factor-beta1 levels in wound healing.

Shah M, Revis D, Herrick S, Baillie R, Thorgeirson S, Ferguson M, Roberts A.

Am J Pathol. 1999 Apr;154(4):1115-24.

15.

Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model.

Chujo S, Shirasaki F, Kawara S, Inagaki Y, Kinbara T, Inaoki M, Takigawa M, Takehara K.

J Cell Physiol. 2005 May;203(2):447-56.

PMID:
15605379
16.

Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes.

Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A.

FASEB J. 2006 Jul;20(9):1525-7. Epub 2006 Jun 5.

PMID:
16754747
17.

Association of down-regulation of CD109 expression with up-expression of Smad7 in pathogenesis of psoriasis.

Liu XX, Feng AP, He YM, Li Y, Wu Y, Lian X, Hu F, Li JW, Tu YT, Chen SJ.

J Huazhong Univ Sci Technolog Med Sci. 2016 Feb;36(1):132-6. doi: 10.1007/s11596-016-1555-1. Epub 2016 Feb 3.

PMID:
26838754
18.

Healing of burn wounds in transgenic mice overexpressing transforming growth factor-beta 1 in the epidermis.

Yang L, Chan T, Demare J, Iwashina T, Ghahary A, Scott PG, Tredget EE.

Am J Pathol. 2001 Dec;159(6):2147-57.

19.

Epidermal hyperplasia and appendage abnormalities in mice lacking CD109.

Mii S, Murakumo Y, Asai N, Jijiwa M, Hagiwara S, Kato T, Asai M, Enomoto A, Ushida K, Sobue S, Ichihara M, Takahashi M.

Am J Pathol. 2012 Oct;181(4):1180-9. doi: 10.1016/j.ajpath.2012.06.021. Epub 2012 Jul 27.

PMID:
22846721
20.

Elevated expression of isopeptide bond cross-links contributes to fibrosis in scleroderma and the healing wounds of tight skin mice.

Sullivan JC, Kakati DD, Carter E, Boyd AK, Kyriakides TR, Agah A.

Wound Repair Regen. 2008 Sep-Oct;16(5):699-705. doi: 10.1111/j.1524-475X.2008.00420.x. Retraction in: Wound Repair Regen. 2010 Sep-Oct;18(5):550.

Supplemental Content

Support Center