Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin.

Webster TA, Sismaet HJ, Conte JL, Chan IP, Goluch ED.

Biosens Bioelectron. 2014 Oct 15;60:265-70. doi: 10.1016/j.bios.2014.04.028. Epub 2014 Apr 29.

PMID:
24813917
2.

Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa.

Sismaet HJ, Webster TA, Goluch ED.

Analyst. 2014 Sep 7;139(17):4241-6. doi: 10.1039/c4an00756e. Epub 2014 Jul 7.

PMID:
24998317
3.

Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection.

Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J.

Bioelectrochemistry. 2010 Feb;77(2):114-9. doi: 10.1016/j.bioelechem.2009.07.008. Epub 2009 Jul 22.

PMID:
19666245
4.

Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry.

Alatraktchi FA, Andersen SB, Johansen HK, Molin S, Svendsen WE.

Sensors (Basel). 2016 Mar 19;16(3). pii: E408. doi: 10.3390/s16030408.

5.

Analysis of pyocyanin from Pseudomonas aeruginosa by adsorptive stripping voltammetry.

Vukomanovic DV, Zoutman DE, Marks GS, Brien JF, van Loon GW, Nakatsu K.

J Pharmacol Toxicol Methods. 1996 Oct;36(2):97-102.

PMID:
8912228
6.

Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

Kim E, Gordonov T, Bentley WE, Payne GF.

Anal Chem. 2013 Feb 19;85(4):2102-8. doi: 10.1021/ac302703y. Epub 2013 Jan 28.

PMID:
23311878
7.

Development of a disposable amperometric biosensor for salicylate based on a plastic electrochemical microcell.

Carvalhal RF, Machado DS, Mendes RK, Almeida AL, Moreira NH, Piazetta MH, Gobbi AL, Kubota LT.

Biosens Bioelectron. 2010 Jun 15;25(10):2200-4. doi: 10.1016/j.bios.2010.02.026. Epub 2010 Mar 3.

PMID:
20363611
8.

Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor.

Ward AC, Connolly P, Tucker NP.

PLoS One. 2014 Mar 10;9(3):e91732. doi: 10.1371/journal.pone.0091732. eCollection 2014.

9.

Utilization of heat-dried Pseudomonas aeruginosa biomass for voltammetric determination of Pb(II).

Yüce M, Nazır H, Dönmez G.

N Biotechnol. 2011 Jul;28(4):356-61. doi: 10.1016/j.nbt.2010.11.005. Epub 2010 Dec 7.

PMID:
21144915
10.

Disposable biosensors for clinical diagnosis.

Janegitz BC, Cancino J, Zucolotto V.

J Nanosci Nanotechnol. 2014 Jan;14(1):378-89. Review.

PMID:
24730269
11.

Concentrations of the Pseudomonas aeruginosa toxin pyocyanin in human ear secretions.

Reimer A, Edvaller B, Johansson B.

Acta Otolaryngol Suppl. 2000;543:86-8.

PMID:
10908987
12.

Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

Webster TA, Sismaet HJ, Chan IP, Goluch ED.

Analyst. 2015 Nov 7;140(21):7195-201. doi: 10.1039/c5an01358e.

PMID:
26396994
13.

Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli.

Safavieh M, Ahmed MU, Tolba M, Zourob M.

Biosens Bioelectron. 2012 Jan 15;31(1):523-8. doi: 10.1016/j.bios.2011.11.032. Epub 2011 Nov 28.

PMID:
22177893
14.

Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa.

Ohfuji K, Sato N, Hamada-Sato N, Kobayashi T, Imada C, Okuma H, Watanabe E.

Biosens Bioelectron. 2004 May 15;19(10):1237-44.

PMID:
15046755
15.

Pyocyanin: production, applications, challenges and new insights.

Jayaseelan S, Ramaswamy D, Dharmaraj S.

World J Microbiol Biotechnol. 2014 Apr;30(4):1159-68. doi: 10.1007/s11274-013-1552-5. Epub 2013 Nov 9. Review.

PMID:
24214679
16.

Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics.

Morkunas B, Galloway WR, Wright M, Ibbeson BM, Hodgkinson JT, O'Connell KM, Bartolucci N, Della Valle M, Welch M, Spring DR.

Org Biomol Chem. 2012 Nov 14;10(42):8452-64. doi: 10.1039/c2ob26501j. Epub 2012 Sep 27.

PMID:
23014532
17.

Visible, colorimetric dissemination between pathogenic strains of Staphylococcus aureus and Pseudomonas aeruginosa using fluorescent dye containing lipid vesicles.

Thet NT, Hong SH, Marshall S, Laabei M, Toby A, Jenkins A.

Biosens Bioelectron. 2013 Mar 15;41:538-43. doi: 10.1016/j.bios.2012.09.019. Epub 2012 Sep 23.

PMID:
23063348
18.

Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum.

Ozcan A, Sahin Y.

Biosens Bioelectron. 2010 Jul 15;25(11):2497-502. doi: 10.1016/j.bios.2010.04.020. Epub 2010 Apr 21.

PMID:
20452760
19.

Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa.

Fuse K, Fujimura S, Kikuchi T, Gomi K, Iida Y, Nukiwa T, Watanabe A.

J Infect Chemother. 2013 Feb;19(1):82-8. doi: 10.1007/s10156-012-0457-9. Epub 2012 Aug 3.

PMID:
22865331
20.

Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes.

Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H.

Biosens Bioelectron. 2010 Jun 15;25(10):2366-9. doi: 10.1016/j.bios.2010.02.031. Epub 2010 Mar 4.

PMID:
20307965

Supplemental Content

Support Center