Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+).

Krug AK, Gutbier S, Zhao L, Pöltl D, Kullmann C, Ivanova V, Förster S, Jagtap S, Meiser J, Leparc G, Schildknecht S, Adam M, Hiller K, Farhan H, Brunner T, Hartung T, Sachinidis A, Leist M.

Cell Death Dis. 2014 May 8;5:e1222. doi: 10.1038/cddis.2014.166.

2.

Uncoupling of ATP-depletion and cell death in human dopaminergic neurons.

Pöltl D, Schildknecht S, Karreman C, Leist M.

Neurotoxicology. 2012 Aug;33(4):769-79. doi: 10.1016/j.neuro.2011.12.007.

PMID:
22206971
3.

DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease.

Wang X, Su B, Liu W, He X, Gao Y, Castellani RJ, Perry G, Smith MA, Zhu X.

Aging Cell. 2011 Oct;10(5):807-23. doi: 10.1111/j.1474-9726.2011.00721.x.

4.

Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death via the mitochondrial apoptotic pathway.

Zhai A, Zhu X, Wang X, Chen R, Wang H.

Eur J Pharmacol. 2013 Aug 5;713(1-3):58-67. doi: 10.1016/j.ejphar.2013.04.029.

PMID:
23665112
5.

α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease.

Ryan BJ, Lourenço-Venda LL, Crabtree MJ, Hale AB, Channon KM, Wade-Martins R.

Free Radic Biol Med. 2014 Feb;67:58-68. doi: 10.1016/j.freeradbiomed.2013.10.008.

6.
7.

Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells.

Schildknecht S, Pöltl D, Nagel DM, Matt F, Scholz D, Lotharius J, Schmieg N, Salvo-Vargas A, Leist M.

Toxicol Appl Pharmacol. 2009 Nov 15;241(1):23-35. doi: 10.1016/j.taap.2009.07.027.

PMID:
19647008
8.

Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R.

ACS Chem Biol. 2014 Sep 19;9(9):2032-48. doi: 10.1021/cb400894a.

9.

Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP⁺)-induced loss of mesencephalic dopaminergic neurons.

Khan MM, Zaheer S, Nehman J, Zaheer A.

Neuroscience. 2014 Sep 26;277:196-205. doi: 10.1016/j.neuroscience.2014.07.003.

10.
11.

Neurotoxin-induced pathway perturbation in human neuroblastoma SH-EP cells.

Do JH.

Mol Cells. 2014 Sep;37(9):672-84. doi: 10.14348/molcells.2014.0173.

12.

The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.

Nakamura K, Bindokas VP, Marks JD, Wright DA, Frim DM, Miller RJ, Kang UJ.

Mol Pharmacol. 2000 Aug;58(2):271-8.

13.

Gene expression profiling of MPP+-treated MN9D cells: a mechanism of toxicity study.

Wang J, Xu Z, Fang H, Duhart HM, Patterson TA, Ali SF.

Neurotoxicology. 2007 Sep;28(5):979-87.

PMID:
17475336
14.

Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system.

Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG.

Oxid Med Cell Longev. 2012;2012:921941. doi: 10.1155/2012/921941.

15.

Metabolic effects of 1-methyl-4-phenylpyridinium (MPP(+)) in primary neuron cultures.

Marini AM, Nowak TS Jr.

J Neurosci Res. 2000 Dec 15;62(6):814-20.

PMID:
11107166
16.
17.

The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism.

Lannuzel A, Michel PP, Höglinger GU, Champy P, Jousset A, Medja F, Lombès A, Darios F, Gleye C, Laurens A, Hocquemiller R, Hirsch EC, Ruberg M.

Neuroscience. 2003;121(2):287-96.

PMID:
14521988
18.

Changes in neuronal dopamine homeostasis following 1-methyl-4-phenylpyridinium (MPP+) exposure.

Choi SJ, Panhelainen A, Schmitz Y, Larsen KE, Kanter E, Wu M, Sulzer D, Mosharov EV.

J Biol Chem. 2015 Mar 13;290(11):6799-809. doi: 10.1074/jbc.M114.631556.

19.

Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation.

Hung KC, Huang HJ, Lin MW, Lei YP, Lin AM.

PLoS One. 2014 Mar 19;9(3):e91074. doi: 10.1371/journal.pone.0091074.

20.

Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity.

Kwok KH, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL.

Free Radic Biol Med. 2010 Sep 15;49(6):1023-35. doi: 10.1016/j.freeradbiomed.2010.06.017.

PMID:
20600837

Supplemental Content

Support Center