Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering.

Han TU, Park J, Domingues CF, Moretti-Ferreira D, Paris E, Sainz E, Gutierrez J, Drayna D.

Neurobiol Dis. 2014 Sep;69:23-31. doi: 10.1016/j.nbd.2014.04.019.

2.

Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population.

Chen H, Xu J, Zhou Y, Gao Y, Wang G, Xia J, Huen MS, Siok WT, Jiang Y, Tan LH, Sun Y.

BMC Genet. 2015 Feb 3;16:7. doi: 10.1186/s12863-015-0172-5.

3.

A role for inherited metabolic deficits in persistent developmental stuttering.

Kang C, Drayna D.

Mol Genet Metab. 2012 Nov;107(3):276-80. doi: 10.1016/j.ymgme.2012.07.020. Review.

4.

Mucolipidosis types II and III and non-syndromic stuttering are associated with different variants in the same genes.

Raza MH, Domingues CE, Webster R, Sainz E, Paris E, Rahn R, Gutierrez J, Chow HM, Mundorff J, Kang CS, Riaz N, Basra MA, Khan S, Riazuddin S, Moretti-Ferreira D, Braun A, Drayna D.

Eur J Hum Genet. 2016 Apr;24(4):529-34. doi: 10.1038/ejhg.2015.154.

PMID:
26130485
5.

Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering.

Kang C, Riazuddin S, Mundorff J, Krasnewich D, Friedman P, Mullikin JC, Drayna D.

N Engl J Med. 2010 Feb 25;362(8):677-85. doi: 10.1056/NEJMoa0902630.

6.

Cntnap2 expression in the cerebellum of Foxp2(R552H) mice, with a mutation related to speech-language disorder.

Fujita E, Tanabe Y, Momoi MY, Momoi T.

Neurosci Lett. 2012 Jan 11;506(2):277-80. doi: 10.1016/j.neulet.2011.11.022.

PMID:
22133810
7.

Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case.

Petrin AL, Giacheti CM, Maximino LP, Abramides DV, Zanchetta S, Rossi NF, Richieri-Costa A, Murray JC.

Am J Med Genet A. 2010 Dec;152A(12):3164-72. doi: 10.1002/ajmg.a.33749.

8.

Analysis of two language-related genes in autism: a case-control association study of FOXP2 and CNTNAP2.

Toma C, Hervás A, Torrico B, Balmaña N, Salgado M, Maristany M, Vilella E, Martínez-Leal R, Planelles MI, Cuscó I, del Campo M, Pérez-Jurado LA, Caballero-Andaluz R, de Diego-Otero Y, Pérez-Costillas L, Ramos-Quiroga JA, Ribasés M, Bayés M, Cormand B.

Psychiatr Genet. 2013 Apr;23(2):82-5. doi: 10.1097/YPG.0b013e32835d6fc6.

PMID:
23277129
9.

Association between Rare Variants in AP4E1, a Component of Intracellular Trafficking, and Persistent Stuttering.

Raza MH, Mattera R, Morell R, Sainz E, Rahn R, Gutierrez J, Paris E, Root J, Solomon B, Brewer C, Basra MA, Khan S, Riazuddin S, Braun A, Bonifacino JS, Drayna D.

Am J Hum Genet. 2015 Nov 5;97(5):715-25. doi: 10.1016/j.ajhg.2015.10.007.

10.

FOXP2 targets show evidence of positive selection in European populations.

Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, Fisher SE, Tyler-Smith C.

Am J Hum Genet. 2013 May 2;92(5):696-706. doi: 10.1016/j.ajhg.2013.03.019.

11.

Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

Roll P, Vernes SC, Bruneau N, Cillario J, Ponsole-Lenfant M, Massacrier A, Rudolf G, Khalife M, Hirsch E, Fisher SE, Szepetowski P.

Hum Mol Genet. 2010 Dec 15;19(24):4848-60. doi: 10.1093/hmg/ddq415.

12.

Contactin‑associated protein‑like 2 expression in SH‑SY5Y cells is upregulated by a FOXP2 mutant with a shortened poly‑glutamine tract.

Zhao Y, Liu X, Sun H, Wang Y, Yang W, Ma H.

Mol Med Rep. 2015 Dec;12(6):8162-8. doi: 10.3892/mmr.2015.4483.

PMID:
26497390
13.

A functional genetic link between distinct developmental language disorders.

Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE.

N Engl J Med. 2008 Nov 27;359(22):2337-45. doi: 10.1056/NEJMoa0802828.

14.

Genetic advances in the study of speech and language disorders.

Newbury DF, Monaco AP.

Neuron. 2010 Oct 21;68(2):309-20. doi: 10.1016/j.neuron.2010.10.001. Review.

15.

Imaging genetics of FOXP2 in dyslexia.

Wilcke A, Ligges C, Burkhardt J, Alexander M, Wolf C, Quente E, Ahnert P, Hoffmann P, Becker A, Müller-Myhsok B, Cichon S, Boltze J, Kirsten H.

Eur J Hum Genet. 2012 Feb;20(2):224-9. doi: 10.1038/ejhg.2011.160. Erratum in: Eur J Hum Genet. 2012 Jun;20(6):714.

16.

Molecular analysis of the GNPTAB and GNPTG genes in 13 patients with mucolipidosis type II or type III - identification of eight novel mutations.

Encarnação M, Lacerda L, Costa R, Prata MJ, Coutinho MF, Ribeiro H, Lopes L, Pineda M, Ignatius J, Galvez H, Mustonen A, Vieira P, Lima MR, Alves S.

Clin Genet. 2009 Jul;76(1):76-84. doi: 10.1111/j.1399-0004.2009.01185.x.

PMID:
19659762
17.

Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria.

Turner SJ, Hildebrand MS, Block S, Damiano J, Fahey M, Reilly S, Bahlo M, Scheffer IE, Morgan AT.

Am J Med Genet A. 2013 Sep;161A(9):2321-6. doi: 10.1002/ajmg.a.36055.

PMID:
23918746
18.

Functional genetic analysis of mutations implicated in a human speech and language disorder.

Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N, Coupe AM, Bird LE, Davies KE, Fisher SE.

Hum Mol Genet. 2006 Nov 1;15(21):3154-67.

PMID:
16984964
19.

Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach.

Chiocchetti AG, Kopp M, Waltes R, Haslinger D, Duketis E, Jarczok TA, Poustka F, Voran A, Graab U, Meyer J, Klauck SM, Fulda S, Freitag CM.

Mol Psychiatry. 2015 Jul;20(7):839-49. doi: 10.1038/mp.2014.103.

PMID:
25224256
20.

Widespread differences in cortex DNA methylation of the "language gene" CNTNAP2 between humans and chimpanzees.

Schneider E, El Hajj N, Richter S, Roche-Santiago J, Nanda I, Schempp W, Riederer P, Navarro B, Bontrop RE, Kondova I, Scholz CJ, Haaf T.

Epigenetics. 2014 Apr;9(4):533-45. doi: 10.4161/epi.27689.

Items per page

Supplemental Content

Support Center