Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo, and FeMn Carbonyl Dithiolates.

Carroll ME, Chen J, Gray DE, Lansing JC, Rauchfuss TB, Schilter D, Volkers PI, Wilson SR.

Organometallics. 2014 Feb 24;33(4):858-867. Epub 2014 Feb 3.

2.

Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties.

Carroll ME, Barton BE, Gray DL, Mack AE, Rauchfuss TB.

Inorg Chem. 2011 Oct 3;50(19):9554-63. doi: 10.1021/ic2012759. Epub 2011 Aug 25.

3.

Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.

Rauchfuss TB.

Acc Chem Res. 2015 Jul 21;48(7):2107-16. doi: 10.1021/acs.accounts.5b00177. Epub 2015 Jun 16.

4.

Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.

Barton BE, Zampella G, Justice AK, De Gioia L, Rauchfuss TB, Wilson SR.

Dalton Trans. 2010 Mar 28;39(12):3011-9. doi: 10.1039/b910147k. Epub 2009 Sep 16.

5.

Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site.

Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M.

Inorg Chem. 2012 Feb 20;51(4):2338-48. doi: 10.1021/ic202329y. Epub 2012 Feb 3.

6.

Modulation of the electronic structure and the Ni-Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase.

Zhu W, Marr AC, Wang Q, Neese F, Spencer DJ, Blake AJ, Cooke PA, Wilson C, Schröder M.

Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18280-5. Epub 2005 Dec 13.

7.

Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.

Chambers GM, Huynh MT, Li Y, Hammes-Schiffer S, Rauchfuss TB, Reijerse E, Lubitz W.

Inorg Chem. 2016 Jan 19;55(2):419-31. doi: 10.1021/acs.inorgchem.5b01662. Epub 2015 Sep 30.

8.

Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts.

Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D.

Dalton Trans. 2013 May 21;42(19):6775-92. doi: 10.1039/c3dt50147g.

PMID:
23503781
9.

Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures.

Schilter D, Rauchfuss TB, Stein M.

Inorg Chem. 2012 Aug 20;51(16):8931-41. doi: 10.1021/ic300910r. Epub 2012 Jul 27.

10.

Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site.

Barton BE, Whaley CM, Rauchfuss TB, Gray DL.

J Am Chem Soc. 2009 May 27;131(20):6942-3. doi: 10.1021/ja902570u.

11.

Nickel-iron dithiolates related to the deactivated [NiFe]-hydrogenases.

Schilter D, Rauchfuss TB.

Dalton Trans. 2012 Nov 21;41(43):13324-9. doi: 10.1039/c2dt31895d.

12.

Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4.

Zaffaroni R, Rauchfuss TB, Gray DL, De Gioia L, Zampella G.

J Am Chem Soc. 2012 Nov 21;134(46):19260-9. doi: 10.1021/ja3094394. Epub 2012 Nov 13.

13.

Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)52-diphosphine)(μ-edt)2] as Proton Reduction Catalysts.

Rahaman A, Ghosh S, Unwin DG, Basak-Modi S, Holt KB, Kabir SE, Nordlander E, Richmond MG, Hogarth G.

Organometallics. 2014 Mar 24;33(6):1356-1366. Epub 2014 Mar 5.

14.

Mechanistic aspects of the protonation of [FeFe]-hydrogenase subsite analogues.

Jablonskyte A, Wright JA, Pickett CJ.

Dalton Trans. 2010 Mar 28;39(12):3026-34. doi: 10.1039/b923191a. Epub 2010 Jan 19.

PMID:
20221536
15.

[FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges.

Li P, Wang M, Pan J, Chen L, Wang N, Sun L.

J Inorg Biochem. 2008 Apr;102(4):952-9. doi: 10.1016/j.jinorgbio.2007.12.018. Epub 2007 Dec 25.

PMID:
18262276
16.

Reaction of Aryl Diazonium Salts and Diiron(I) Dithiolato Carbonyls: Evidence for Radical Intermediates.

Olsen MT, Rauchfuss TB, Zaffaroni R.

Organometallics. 2012 Apr 23;31(8):3447-3450. Epub 2012 Mar 29.

17.

New nitrosyl derivatives of diiron dithiolates related to the active site of the [FeFe]-hydrogenases.

Olsen MT, Justice AK, Gloaguen F, Rauchfuss TB, Wilson SR.

Inorg Chem. 2008 Dec 15;47(24):11816-24. doi: 10.1021/ic801542w.

18.

Coordination chemistry of [HFe(CN)(2)(CO)(3)](-) and its derivatives: toward a model for the iron subsite of the [NiFe]-hydrogenases.

Whaley CM, Rauchfuss TB, Wilson SR.

Inorg Chem. 2009 May 18;48(10):4462-9. doi: 10.1021/ic900200s.

19.

Chelate control of diiron(I) dithiolates relevant to the [Fe-Fe]- hydrogenase active site.

Justice AK, Zampella G, De Gioia L, Rauchfuss TB, van der Vlugt JI, Wilson SR.

Inorg Chem. 2007 Mar 5;46(5):1655-64. Epub 2007 Feb 6.

20.

N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe] Hydrogenases: Stability and Complexation.

Angamuthu R, Chen CS, Cochrane TR, Gray DL, Schilter D, Ulloa OA, Rauchfuss TB.

Inorg Chem. 2015 Jun 15;54(12):5717-24. doi: 10.1021/acs.inorgchem.5b00290. Epub 2015 May 22.

Supplemental Content

Support Center