Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes.

Tian L, Huang YF, Wang LQ, Bai H, Wang Q, Jiang JJ, Wu Y, Gao M.

J Ophthalmol. 2014;2014:147516. doi: 10.1155/2014/147516. Epub 2014 Mar 30.

2.

Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes.

Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, Huang Y.

Acta Ophthalmol. 2016 Aug;94(5):e317-24. doi: 10.1111/aos.12672. Epub 2015 Feb 1.

3.

Keratoconus diagnosis using Corvis ST measured biomechanical parameters.

Elham R, Jafarzadehpur E, Hashemi H, Amanzadeh K, Shokrollahzadeh F, Yekta A, Khabazkhoob M.

J Curr Ophthalmol. 2017 May 22;29(3):175-181. doi: 10.1016/j.joco.2017.05.002. eCollection 2017 Sep.

4.

Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes.

Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, Zheng YP.

J Refract Surg. 2014 Nov;30(11):785-91. doi: 10.3928/1081597X-20140930-01. Epub 2014 Oct 7.

PMID:
25291757
5.

Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer.

Ali NQ, Patel DV, McGhee CN.

Invest Ophthalmol Vis Sci. 2014 May 15;55(6):3651-9. doi: 10.1167/iovs.13-13715.

PMID:
24833745
6.

[Corneal biomechanical properties in keratoconic and normal eyes].

Wei SS, Li Y, Li J, Liu JG, Ye L, Wan YQ, Li J, Du J.

Zhonghua Yan Ke Za Zhi. 2016 Sep 11;52(9):669-73. doi: 10.3760/cma.j.issn.0412-4081.2016.09.007. Chinese.

PMID:
27647247
7.

Variability of Corneal Deformation Response in Normal and Keratoconic Eyes.

Ye C, Yu M, Lai G, Jhanji V.

Optom Vis Sci. 2015 Jul;92(7):e149-53. doi: 10.1097/OPX.0000000000000628.

PMID:
26002009
8.

Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking.

Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J.

J Refract Surg. 2014 Jun;30(6):408-14. doi: 10.3928/1081597X-20140513-02.

PMID:
24972407
9.

Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes.

Wang YM, Chan TCY, Yu M, Jhanji V.

J Refract Surg. 2017 Sep 1;33(9):632-638. doi: 10.3928/1081597X-20170621-09.

PMID:
28880339
10.

[Evaluation of corneal biomechanical properties in glaucoma and control patients by dynamic Scheimpflug corneal imaging technology].

Coste V, Schweitzer C, Paya C, Touboul D, Korobelnik JF.

J Fr Ophtalmol. 2015 Jun;38(6):504-13. doi: 10.1016/j.jfo.2015.01.007. Epub 2015 May 11. French.

11.

Comparison of Corneal Deformation Parameters in Keratoconic and Normal Eyes Using a Non-contact Tonometer With a Dynamic Ultra-High-Speed Scheimpflug Camera.

Mercer RN, Waring GO 4th, Roberts CJ, Jhanji V, Wang Y, Filho JS, Hemings RA Jr, Rocha KM.

J Refract Surg. 2017 Sep 1;33(9):625-631. doi: 10.3928/1081597X-20170621-03.

PMID:
28880338
12.

Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes.

Francis M, Pahuja N, Shroff R, Gowda R, Matalia H, Shetty R, Remington Nelson EJ, Sinha Roy A.

J Cataract Refract Surg. 2017 Oct;43(10):1271-1280. doi: 10.1016/j.jcrs.2017.10.012.

PMID:
29120713
13.

Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes.

Wang LK, Tian L, Zheng YP.

J Biophotonics. 2016 May;9(5):454-63. doi: 10.1002/jbio.201500245. Epub 2016 Jan 11.

PMID:
26755237
14.

Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas.

Nemeth G, Szalai E, Hassan Z, Lipecz A, Flasko Z, Modis L.

Int J Ophthalmol. 2017 Feb 18;10(2):217-222. doi: 10.18240/ijo.2017.02.06. eCollection 2017.

15.

Keratoconus Screening With Dynamic Biomechanical In Vivo Scheimpflug Analyses: A Proof-of-Concept Study.

Steinberg J, Amirabadi NE, Frings A, Mehlan J, Katz T, Linke SJ.

J Refract Surg. 2017 Nov 1;33(11):773-778. doi: 10.3928/1081597X-20170807-02.

PMID:
29117418
16.

Ocular biomechanical measurements on post-keratoplasty corneas using a Scheimpflug-based noncontact device.

Modis L Jr, Hassan Z, Szalai E, Flaskó Z, Berta A, Nemeth G.

Int J Ophthalmol. 2016 Feb 18;9(2):235-8. doi: 10.18240/ijo.2016.02.09. eCollection 2016.

17.

Detection of Keratoconus With a New Biomechanical Index.

Vinciguerra R, Ambrósio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P.

J Refract Surg. 2016 Dec 1;32(12):803-810. doi: 10.3928/1081597X-20160629-01.

PMID:
27930790
18.

Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer.

Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, Vinciguerra P, Ambrósio R Jr.

J Refract Surg. 2017 Apr 1;33(4):266-273. doi: 10.3928/1081597X-20161221-03.

PMID:
28407167
19.

Corneal Biomechanical Properties in Myopic Eyes Measured by a Dynamic Scheimpflug Analyzer.

Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q.

J Ophthalmol. 2015;2015:161869. doi: 10.1155/2015/161869. Epub 2015 Oct 20.

20.

ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes.

Luz A, Fontes BM, Lopes B, Ramos I, Schor P, Ambrósio R Jr.

Arq Bras Oftalmol. 2013 Mar-Apr;76(2):111-7.

Supplemental Content

Support Center