Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 132

1.

A general kinetic model for the hydrothermal liquefaction of microalgae.

Valdez PJ, Tocco VJ, Savage PE.

Bioresour Technol. 2014 Jul;163:123-7. doi: 10.1016/j.biortech.2014.04.013. Epub 2014 Apr 18.

PMID:
24793402
2.

Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.

Li H, Liu Z, Zhang Y, Li B, Lu H, Duan N, Liu M, Zhu Z, Si B.

Bioresour Technol. 2014 Feb;154:322-9. doi: 10.1016/j.biortech.2013.12.074. Epub 2013 Dec 22.

PMID:
24413449
3.

A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp.

Hietala DC, Faeth JL, Savage PE.

Bioresour Technol. 2016 Aug;214:102-111. doi: 10.1016/j.biortech.2016.04.067. Epub 2016 Apr 20.

PMID:
27128195
4.

Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction.

Sheehan JD, Savage PE.

Bioresour Technol. 2017 Sep;239:144-150. doi: 10.1016/j.biortech.2017.05.013. Epub 2017 May 5.

PMID:
28521223
5.

Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products.

Muppaneni T, Reddy HK, Selvaratnam T, Dandamudi KPR, Dungan B, Nirmalakhandan N, Schaub T, Omar Holguin F, Voorhies W, Lammers P, Deng S.

Bioresour Technol. 2017 Jan;223:91-97. doi: 10.1016/j.biortech.2016.10.022. Epub 2016 Oct 14.

PMID:
27788432
6.

A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp.

Vo TK, Kim SS, Ly HV, Lee EY, Lee CG, Kim J.

Bioresour Technol. 2017 Oct;241:610-619. doi: 10.1016/j.biortech.2017.05.186. Epub 2017 Jun 1.

PMID:
28605725
7.

Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae.

Faeth JL, Savage PE.

Bioresour Technol. 2016 Apr;206:290-293. doi: 10.1016/j.biortech.2016.01.115. Epub 2016 Feb 15.

PMID:
26879204
8.

Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction.

Li H, Wang M, Wang X, Zhang Y, Lu H, Duan N, Li B, Zhang D, Dong T, Liu Z.

Sci Total Environ. 2018 Apr 13;635:70-77. doi: 10.1016/j.scitotenv.2018.03.354. [Epub ahead of print]

PMID:
29660729
9.

Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae.

Xu D, Savage PE.

Bioresour Technol. 2017 Sep;239:1-6. doi: 10.1016/j.biortech.2017.04.127. Epub 2017 May 4.

PMID:
28500883
10.

Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

López Barreiro D, Samorì C, Terranella G, Hornung U, Kruse A, Prins W.

Bioresour Technol. 2014 Dec;174:256-65. doi: 10.1016/j.biortech.2014.10.031. Epub 2014 Oct 14.

PMID:
25463806
11.

Influence of strain-specific parameters on hydrothermal liquefaction of microalgae.

López Barreiro D, Zamalloa C, Boon N, Vyverman W, Ronsse F, Brilman W, Prins W.

Bioresour Technol. 2013 Oct;146:463-471. doi: 10.1016/j.biortech.2013.07.123. Epub 2013 Jul 31.

PMID:
23958678
12.

Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters.

Prapaiwatcharapan K, Sunphorka S, Kuchonthara P, Kangvansaichol K, Hinchiranan N.

Bioresour Technol. 2015 Sep;191:426-32. doi: 10.1016/j.biortech.2015.04.027. Epub 2015 Apr 18.

PMID:
25913031
13.

Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation.

Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S.

Bioresour Technol. 2014 Dec;174:212-21. doi: 10.1016/j.biortech.2014.10.029. Epub 2014 Oct 12.

PMID:
25463802
14.

Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae.

Cheng X, Ooms MD, Sinton D.

Lab Chip. 2016 Jan 21;16(2):256-60. doi: 10.1039/c5lc01369k.

PMID:
26667244
15.

Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst.

Wang W, Xu Y, Wang X, Zhang B, Tian W, Zhang J.

Bioresour Technol. 2018 Feb;250:474-480. doi: 10.1016/j.biortech.2017.11.051. Epub 2017 Nov 20.

16.

Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds.

Sheng L, Wang X, Yang X.

Bioresour Technol. 2018 Jan;247:14-20. doi: 10.1016/j.biortech.2017.08.011. Epub 2017 Aug 5.

PMID:
28946088
17.

Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.

Patel B, Guo M, Chong C, Sarudin SHM, Hellgardt K.

Sci Total Environ. 2016 Oct 15;568:489-497. doi: 10.1016/j.scitotenv.2016.06.041. Epub 2016 Jun 16.

18.

Near- and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae.

Yang L, Li Y, Savage PE.

Bioresour Technol. 2016 Jul;211:779-82. doi: 10.1016/j.biortech.2016.03.151. Epub 2016 Mar 30.

PMID:
27055767
19.

Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor.

Ranganathan P, Savithri S.

Bioresour Technol. 2018 Jun;258:151-157. doi: 10.1016/j.biortech.2018.02.076. Epub 2018 Feb 21.

PMID:
29525589
20.

Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp.

Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S.

Bioresour Technol. 2014 Oct;170:20-29. doi: 10.1016/j.biortech.2014.07.083. Epub 2014 Jul 30.

PMID:
25118149

Supplemental Content

Support Center