Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 170

1.

Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells.

Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WK.

Biochem Biophys Res Commun. 2014 May 30;448(2):218-24. doi: 10.1016/j.bbrc.2014.04.096. Epub 2014 Apr 29.

PMID:
24785372
2.

In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis.

Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WK.

PLoS One. 2015 Jan 23;10(1):e0115034. doi: 10.1371/journal.pone.0115034. eCollection 2015.

3.

Hypoxia Enhances Proliferation of Human Adipose-Derived Stem Cells via HIF-1ɑ Activation.

Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K.

PLoS One. 2015 Oct 14;10(10):e0139890. doi: 10.1371/journal.pone.0139890. eCollection 2015.

4.

Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells.

Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, Chérel Y, Weiss P, Guicheux J.

Am J Physiol Cell Physiol. 2010 Feb;298(2):C355-64. doi: 10.1152/ajpcell.00398.2009. Epub 2009 Nov 25.

5.

Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis.

Cheng NC, Chen SY, Li JR, Young TH.

Stem Cells Transl Med. 2013 Aug;2(8):584-94. doi: 10.5966/sctm.2013-0007. Epub 2013 Jul 11.

6.

Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures.

He J, Genetos DC, Yellowley CE, Leach JK.

J Cell Biochem. 2010 May;110(1):87-96. doi: 10.1002/jcb.22514.

PMID:
20213746
7.

IFATS collection: Adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia.

Thangarajah H, Vial IN, Chang E, El-Ftesi S, Januszyk M, Chang EI, Paterno J, Neofytou E, Longaker MT, Gurtner GC.

Stem Cells. 2009 Jan;27(1):266-74. doi: 10.1634/stemcells.2008-0276.

8.

Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system.

Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y.

Cell Prolif. 2016 Apr;49(2):173-84. doi: 10.1111/cpr.12250. Epub 2016 Mar 29.

PMID:
27021233
9.

Prolonged exposure to hypoxic milieu improves the osteogenic potential of adipose derived stem cells.

Fotia C, Massa A, Boriani F, Baldini N, Granchi D.

J Cell Biochem. 2015 Jul;116(7):1442-53. doi: 10.1002/jcb.25106.

PMID:
25648991
10.

Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation.

Yu J, Tu YK, Tang YB, Cheng NC.

Biomaterials. 2014 Apr;35(11):3516-26. doi: 10.1016/j.biomaterials.2014.01.015. Epub 2014 Jan 24.

PMID:
24462360
11.

The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells.

Weijers EM, Van Den Broek LJ, Waaijman T, Van Hinsbergh VW, Gibbs S, Koolwijk P.

Tissue Eng Part A. 2011 Nov;17(21-22):2675-85. doi: 10.1089/ten.tea.2010.0661. Epub 2011 Aug 10.

PMID:
21830936
12.

Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential.

Rada T, Reis RL, Gomes ME.

Stem Cell Rev. 2011 Mar;7(1):64-76. doi: 10.1007/s12015-010-9147-0.

PMID:
20396979
13.

Low oxygen tension enhances proliferation and maintains stemness of adipose tissue-derived stromal cells.

Yamamoto Y, Fujita M, Tanaka Y, Kojima I, Kanatani Y, Ishihara M, Tachibana S.

Biores Open Access. 2013 Jun;2(3):199-205. doi: 10.1089/biores.2013.0004.

14.

Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells.

D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC.

Bone. 2006 Sep;39(3):513-22. Epub 2006 Apr 17.

PMID:
16616713
15.

Impact of low oxygen on the secretome of human adipose-derived stromal/stem cell primary cultures.

Frazier TP, Gimble JM, Kheterpal I, Rowan BG.

Biochimie. 2013 Dec;95(12):2286-96. doi: 10.1016/j.biochi.2013.07.011. Epub 2013 Jul 20.

PMID:
23880643
16.

Cellular and molecular stimulation of adipose-derived stem cells under hypoxia.

Kang S, Kim SM, Sung JH.

Cell Biol Int. 2014 May;38(5):553-62. doi: 10.1002/cbin.10246. Epub 2014 Feb 5. Review.

PMID:
24446066
17.

Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells.

Wan Safwani WK, Choi JR, Yong KW, Ting I, Mat Adenan NA, Pingguan-Murphy B.

Cryobiology. 2017 Apr;75:91-99. doi: 10.1016/j.cryobiol.2017.01.006. Epub 2017 Jan 17.

PMID:
28108309
18.

Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair.

Portron S, Merceron C, Gauthier O, Lesoeur J, Sourice S, Masson M, Fellah BH, Geffroy O, Lallemand E, Weiss P, Guicheux J, Vinatier C.

PLoS One. 2013 Apr 30;8(4):e62368. doi: 10.1371/journal.pone.0062368. Print 2013.

19.

Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential.

Chung HM, Won CH, Sung JH.

Expert Opin Biol Ther. 2009 Dec;9(12):1499-508. doi: 10.1517/14712590903307362. Review.

PMID:
19780713
20.

The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation.

Wan Safwani WK, Makpol S, Sathapan S, Chua KH.

Biotechnol Appl Biochem. 2011 Jul-Aug;58(4):261-70. doi: 10.1002/bab.38. Epub 2011 Aug 9.

PMID:
21838801

Supplemental Content

Support Center