Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Mechanisms of cellular uptake, intracellular transportation, and degradation of CIGB-300, a Tat-conjugated peptide, in tumor cell lines.

Benavent Acero FR, Perera Negrin Y, Alonso DF, Perea SE, Gomez DE, Farina HG.

Mol Pharm. 2014 Jun 2;11(6):1798-807. doi: 10.1021/mp4006062.

PMID:
24773585
2.

Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

Perera Y, Costales HC, Diaz Y, Reyes O, Farina HG, Mendez L, Gómez RE, Acevedo BE, Gomez DE, Alonso DF, Perea SE.

J Pept Sci. 2012 Apr;18(4):215-23. doi: 10.1002/psc.1432.

PMID:
22407768
3.

Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide.

Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH, Kim YS.

PLoS One. 2012;7(12):e51813. doi: 10.1371/journal.pone.0051813.

4.

CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo.

Perea SE, Reyes O, Baladron I, Perera Y, Farina H, Gil J, Rodriguez A, Bacardi D, Marcelo JL, Cosme K, Cruz M, Valenzuela C, López-Saura PA, Puchades Y, Serrano JM, Mendoza O, Castellanos L, Sanchez A, Betancourt L, Besada V, Silva R, López E, Falcón V, Hernández I, Solares M, Santana A, Díaz A, Ramos T, López C, Ariosa J, González LJ, Garay H, Gómez D, Gómez R, Alonso DF, Sigman H, Herrera L, Acevedo B.

Mol Cell Biochem. 2008 Sep;316(1-2):163-7. doi: 10.1007/s11010-008-9814-5.

PMID:
18575815
5.

Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity.

Perera Y, Farina HG, Gil J, Rodriguez A, Benavent F, Castellanos L, Gómez RE, Acevedo BE, Alonso DF, Perea SE.

Mol Cancer Ther. 2009 May;8(5):1189-96. doi: 10.1158/1535-7163.MCT-08-1056.

6.

Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies.

Solares AM, Santana A, Baladrón I, Valenzuela C, González CA, Díaz A, Castillo D, Ramos T, Gómez R, Alonso DF, Herrera L, Sigman H, Perea SE, Acevedo BE, López-Saura P.

BMC Cancer. 2009 May 13;9:146. doi: 10.1186/1471-2407-9-146.

7.

Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.

Subrizi A, Tuominen E, Bunker A, Róg T, Antopolsky M, Urtti A.

J Control Release. 2012 Mar 10;158(2):277-85. doi: 10.1016/j.jconrel.2011.11.007.

PMID:
22100438
8.

CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo.

Farina HG, Benavent Acero F, Perera Y, Rodríguez A, Perea SE, Castro BA, Gomez R, Alonso DF, Gomez DE.

Exp Cell Res. 2011 Jul 15;317(12):1677-88. doi: 10.1016/j.yexcr.2011.04.011.

PMID:
21565189
10.

Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models.

Perera Y, Toro ND, Gorovaya L, Fernandez-DE-Cossio J, Farina HG, Perea SE.

Mol Clin Oncol. 2014 Nov;2(6):935-944.

11.

CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research.

Perea SE, Baladron I, Garcia Y, Perera Y, Lopez A, Soriano JL, Batista N, Palau A, Hernández I, Farina H, Garcia I, Gonzalez L, Gil J, Rodriguez A, Solares M, Santana A, Cruz M, Lopez M, Valenzuela C, Reyes O, López-Saura PA, González CA, Diaz A, Castellanos L, Sanchez A, Betancourt L, Besada V, González LJ, Garay H, Gómez R, Gómez DE, Alonso DF, Perrin P, Renualt JY, Sigman H, Herrera L, Acevedo B.

Mol Cell Biochem. 2011 Oct;356(1-2):45-50. doi: 10.1007/s11010-011-0950-y.

PMID:
21735096
12.

Antitumor efficacy, pharmacokinetic and biodistribution studies of the anticancer peptide CIGB-552 in mouse models.

Vallespí MG, Pimentel G, Cabrales-Rico A, Garza J, Oliva B, Mendoza O, Gomez Y, Basaco T, Sánchez I, Calderón C, Rodriguez JC, Markelova MR, Fichtner I, Astrada S, Bollati-Fogolín M, Garay HE, Reyes O.

J Pept Sci. 2014 Nov;20(11):850-9. doi: 10.1002/psc.2676.

PMID:
25044757
13.

Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans.

Tyagi M, Rusnati M, Presta M, Giacca M.

J Biol Chem. 2001 Feb 2;276(5):3254-61.

14.

Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.

Ma DX, Shi NQ, Qi XR.

Int J Pharm. 2011 Oct 31;419(1-2):200-8. doi: 10.1016/j.ijpharm.2011.08.001.

PMID:
21843610
15.

On the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide.

Mano M, Teodósio C, Paiva A, Simões S, Pedroso de Lima MC.

Biochem J. 2005 Sep 1;390(Pt 2):603-12.

16.
17.

ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: evidence for heparan sulfate epitope specificity and role of both syndecan and glypican.

Wittrup A, Zhang SH, ten Dam GB, van Kuppevelt TH, Bengtson P, Johansson M, Welch J, Mörgelin M, Belting M.

J Biol Chem. 2009 Nov 20;284(47):32959-67. doi: 10.1074/jbc.M109.036129.

18.

A comprehensive model for the cellular uptake of cationic cell-penetrating peptides.

Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R.

Traffic. 2007 Jul;8(7):848-66.

19.

Comparative analysis reveals amino acids critical for anticancer activity of peptide CIGB-552.

Astrada S, Gomez Y, Barrera E, Obal G, Pritsch O, Pantano S, Vallespí MG, Bollati-Fogolín M.

J Pept Sci. 2016 Nov;22(11-12):711-722. doi: 10.1002/psc.2934.

PMID:
27933724
Items per page

Supplemental Content

Support Center