Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Posterior pole asymmetry analysis with optical coherence tomography.

Kochendörfer L, Bauer P, Funk J, Töteberg-Harms M.

Klin Monbl Augenheilkd. 2014 Apr;231(4):368-73. doi: 10.1055/s-0034-1368213. Epub 2014 Apr 25.

PMID:
24771169
2.

Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes.

Langenegger SJ, Funk J, Töteberg-Harms M.

Invest Ophthalmol Vis Sci. 2011 May 18;52(6):3338-44. doi: 10.1167/iovs.10-6611.

3.

Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes.

Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM.

Invest Ophthalmol Vis Sci. 2005 Jul;46(7):2440-3.

PMID:
15980233
4.

Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma.

Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S.

J Glaucoma. 2015 Jan;24(1):55-63. doi: 10.1097/IJG.0b013e31829521db.

PMID:
23722865
5.

Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography.

Seo JH, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM.

Invest Ophthalmol Vis Sci. 2012 Jul 1;53(8):4347-53. doi: 10.1167/iovs.12-9673.

PMID:
22577076
6.

Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT.

Töteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN.

Graefes Arch Clin Exp Ophthalmol. 2012 Feb;250(2):279-87. doi: 10.1007/s00417-011-1811-9. Epub 2011 Sep 10.

PMID:
21909812
7.

Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph.

Leung CK, Ye C, Weinreb RN, Cheung CY, Qiu Q, Liu S, Xu G, Lam DS.

Ophthalmology. 2010 Feb;117(2):267-74. doi: 10.1016/j.ophtha.2009.06.061. Epub 2009 Dec 6.

PMID:
19969364
8.

Intrasession reproducibility of RNFL thickness measurements using SD-OCT in eyes with keratoconus.

Reibaldi M, Uva MG, Avitabile T, Toro MD, Zagari M, Mariotti C, Cennamo G, Reibaldi A, Longo A.

Ophthalmic Surg Lasers Imaging. 2012 Nov-Dec;43(6 Suppl):S83-9. doi: 10.3928/15428877-20121001-04.

PMID:
23357329
9.

Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices.

Matlach J, Wagner M, Malzahn U, Göbel W.

Invest Ophthalmol Vis Sci. 2014 Sep 16;55(10):6536-46. doi: 10.1167/iovs.14-15072.

PMID:
25228545
10.
11.

Comparison of retinal nerve fiber layer thickness values using Stratus Optical Coherence Tomography and Heidelberg Retina Tomograph-III.

Moreno-Montañés J, Antón A, García N, Olmo N, Morilla A, Fallon M.

J Glaucoma. 2009 Sep;18(7):528-34. doi: 10.1097/IJG.0b013e318193c29f.

PMID:
19745667
12.

Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities.

Hwang YH, Kim YY, Kim HK, Sohn YH.

Ophthalmology. 2013 Jul;120(7):1380-7. doi: 10.1016/j.ophtha.2012.12.048. Epub 2013 Mar 28.

PMID:
23541761
13.

Asymmetry of Retinal Nerve Fiber Layer and Posterior Pole Asymmetry Analysis Parameters of Spectral Domain Optical Coherence Tomography in Children.

Dave P, Jethani J, Shah J.

Semin Ophthalmol. 2017;32(4):443-448. doi: 10.3109/08820538.2015.1119857. Epub 2016 Apr 14.

PMID:
27078513
14.

Adjustment of the retinal angle in SD-OCT of glaucomatous eyes provides better intervisit reproducibility of peripapillary RNFL thickness.

Lee K, Sonka M, Kwon YH, Garvin MK, Abràmoff MD.

Invest Ophthalmol Vis Sci. 2013 Jul 18;54(7):4808-12. doi: 10.1167/iovs.13-12211.

15.

Optical coherence tomography in paediatric glaucoma: time domain versus spectral domain.

Ghasia FF, Freedman SF, Rajani A, Holgado S, Asrani S, El-Dairi M.

Br J Ophthalmol. 2013 Jul;97(7):837-42. doi: 10.1136/bjophthalmol-2012-302648. Epub 2013 Apr 25.

PMID:
23620420
16.

Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage.

Sihota R, Sony P, Gupta V, Dada T, Singh R.

Invest Ophthalmol Vis Sci. 2006 May;47(5):2006-10.

PMID:
16639009
17.

Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance.

Xu G, Weinreb RN, Leung CK.

Ophthalmology. 2013 Dec;120(12):2493-500. doi: 10.1016/j.ophtha.2013.07.027. Epub 2013 Sep 17.

PMID:
24053994
18.

Longitudinal variability of optic disc and retinal nerve fiber layer measurements.

Leung CK, Cheung CY, Lin D, Pang CP, Lam DS, Weinreb RN.

Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4886-92. doi: 10.1167/iovs.07-1187. Epub 2008 Jun 6.

PMID:
18539940
19.

Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia.

Choi YJ, Jeoung JW, Park KH, Kim DM.

Invest Ophthalmol Vis Sci. 2013 Mar 28;54(3):2296-304. doi: 10.1167/iovs.12-10530.

PMID:
23462754
20.

The effect of software upgrade on optical coherence tomography measurement of the retinal nerve fiber layer thickness.

Seibold LK, Kahook MY.

Middle East Afr J Ophthalmol. 2012 Oct;19(4):392-6. doi: 10.4103/0974-9233.102745.

Supplemental Content

Support Center