Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 678

1.

Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography.

Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, Wang DL, Hood DC.

Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3328-36. doi: 10.1167/iovs.14-14118.

2.

Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression.

Monteiro ML, Cunha LP, Costa-Cunha LV, Maia OO Jr, Oyamada MK.

Invest Ophthalmol Vis Sci. 2009 Aug;50(8):3535-41. doi: 10.1167/iovs.08-3093. Epub 2009 Mar 5.

PMID:
19264884
3.

Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

Sousa RM, Oyamada MK, Cunha LP, Monteiro MLR.

Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4436-4449. doi: 10.1167/iovs.17-21529.

PMID:
28863215
4.

The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap.

Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M.

Invest Ophthalmol Vis Sci. 2014 Jul 11;55(7):4667-72. doi: 10.1167/iovs.14-14766.

PMID:
25015351
5.

Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography.

Moura FC, Medeiros FA, Monteiro ML.

Ophthalmology. 2007 Jan;114(1):175-81. Epub 2006 Oct 27.

PMID:
17070583
6.

Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression.

Monteiro ML, Hokazono K, Cunha LP, Oyamada MK.

Graefes Arch Clin Exp Ophthalmol. 2013 Mar;251(3):903-15. doi: 10.1007/s00417-012-2156-8. Epub 2012 Sep 29.

PMID:
23052713
7.

Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs.

Kanamori A, Nakamura M, Matsui N, Nagai A, Nakanishi Y, Kusuhara S, Yamada Y, Negi A.

Ophthalmology. 2004 Dec;111(12):2278-83.

PMID:
15582087
8.
9.

Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression.

Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF.

Eye (Lond). 2010 Aug;24(8):1382-90. doi: 10.1038/eye.2010.48. Epub 2010 Apr 30.

PMID:
20431609
10.
11.

Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve.

Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML.

Am J Ophthalmol. 2009 Jan;147(1):56-63.e2. doi: 10.1016/j.ajo.2008.07.020. Epub 2008 Sep 6.

PMID:
18774548
12.

Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography.

Goto K, Miki A, Yamashita T, Araki S, Takizawa G, Nakagawa M, Ieki Y, Kiryu J.

Graefes Arch Clin Exp Ophthalmol. 2016 Apr;254(4):745-56. doi: 10.1007/s00417-015-3181-1. Epub 2015 Oct 7.

13.

Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression.

Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S.

Invest Ophthalmol Vis Sci. 2006 Nov;47(11):4827-35.

PMID:
17065494
14.

Influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain OCT on the diagnostic ability of early glaucoma.

Nakatani Y, Higashide T, Ohkubo S, Sugiyama K.

Invest Ophthalmol Vis Sci. 2014 Oct 23;55(11):7479-85. doi: 10.1167/iovs.14-15530.

PMID:
25342613
15.

Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography.

Monteiro ML, Fernandes DB, Apóstolos-Pereira SL, Callegaro D.

Invest Ophthalmol Vis Sci. 2012 Jun 26;53(7):3959-66. doi: 10.1167/iovs.11-9324.

PMID:
22589446
16.

Topographical correlation between macular layer thickness and clockwise circumpapillary retinal nerve fiber layer sectors in patients with normal tension glaucoma.

Omodaka K, Yokoyama Y, Shiga Y, Inoue M, Takahashi S, Tsuda S, Maruyama K, Nakazawa T.

Curr Eye Res. 2015 Jul;40(7):744-51. doi: 10.3109/02713683.2014.956371. Epub 2014 Sep 11.

PMID:
25211051
17.

Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes.

Pazos M, Dyrda AA, Biarnés M, Gómez A, Martín C, Mora C, Fatti G, Antón A.

Ophthalmology. 2017 Aug;124(8):1218-1228. doi: 10.1016/j.ophtha.2017.03.044. Epub 2017 Apr 29.

PMID:
28461015
18.

Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography.

Fernandes DB, Raza AS, Nogueira RG, Wang D, Callegaro D, Hood DC, Monteiro ML.

Ophthalmology. 2013 Feb;120(2):387-94. doi: 10.1016/j.ophtha.2012.07.066. Epub 2012 Oct 18.

19.

Difference in correspondence between visual field defect and inner macular layer thickness measured using three types of spectral-domain OCT instruments.

Ueda K, Kanamori A, Akashi A, Kawaka Y, Yamada Y, Nakamura M.

Jpn J Ophthalmol. 2015 Jan;59(1):55-64. doi: 10.1007/s10384-014-0355-z. Epub 2014 Nov 7.

PMID:
25377494
20.

The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma.

Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A.

Invest Ophthalmol Vis Sci. 2013 Sep 5;54(9):6025-32. doi: 10.1167/iovs.13-12630.

PMID:
23908182

Supplemental Content

Support Center