Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.

Bhattacharya P, Siegmund T.

Int J Numer Method Biomed Eng. 2014 Oct;30(10):1019-43. doi: 10.1002/cnm.2642. Epub 2014 Apr 23.

PMID:
24760548
2.

A computational study of systemic hydration in vocal fold collision.

Bhattacharya P, Siegmund T.

Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.

3.

Role of gradients in vocal fold elastic modulus on phonation.

Bhattacharya P, Kelleher JE, Siegmund T.

J Biomech. 2015 Sep 18;48(12):3356-63. doi: 10.1016/j.jbiomech.2015.06.015. Epub 2015 Jun 25.

4.

A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.

Zheng X, Bielamowicz S, Luo H, Mittal R.

Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.

5.

Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.

Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C.

J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.

6.

A canonical biomechanical vocal fold model.

Bhattacharya P, Siegmund TH.

J Voice. 2012 Sep;26(5):535-47. doi: 10.1016/j.jvoice.2011.09.001. Epub 2011 Dec 29.

7.

Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

Bailly L, Henrich N, Pelorson X.

J Acoust Soc Am. 2010 May;127(5):3212-22. doi: 10.1121/1.3365220.

PMID:
21117769
8.

The role of glottal surface adhesion on vocal folds biomechanics.

Bhattacharya P, Siegmund T.

Biomech Model Mechanobiol. 2015 Apr;14(2):283-95. doi: 10.1007/s10237-014-0603-7. Epub 2014 Jul 18.

9.

Mechanical characterization of vocal fold tissue: a review study.

Miri AK.

J Voice. 2014 Nov;28(6):657-67. doi: 10.1016/j.jvoice.2014.03.001. Epub 2014 Jul 5. Review.

PMID:
25008382
10.

Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.

Tao C, Liu X.

J Acoust Soc Am. 2011 Feb;129(2):934-43. doi: 10.1121/1.3533692.

PMID:
21361450
11.

The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.

Zhang Z.

J Acoust Soc Am. 2014 Mar;135(3):1480-90. doi: 10.1121/1.4863266.

12.

Optimized transformation of the glottal motion into a mechanical model.

Triep M, Brücker C, Stingl M, Döllinger M.

Med Eng Phys. 2011 Mar;33(2):210-7. doi: 10.1016/j.medengphy.2010.09.019. Epub 2010 Nov 5.

PMID:
21115384
13.

Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

Jones CL, Achuthan A, Erath BD.

J Acoust Soc Am. 2015 Feb;137(2):EL158-64. doi: 10.1121/1.4905892.

PMID:
25698044
14.

Characteristics of phonation onset in a two-layer vocal fold model.

Zhang Z.

J Acoust Soc Am. 2009 Feb;125(2):1091-102. doi: 10.1121/1.3050285.

15.

Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.

Zhang Z.

J Acoust Soc Am. 2010 Apr;127(4):2554-62. doi: 10.1121/1.3308410.

16.

A computational study of vocal fold dehydration during phonation.

Wu L, Zhang Z.

IEEE Trans Biomed Eng. 2017 Apr 5. doi: 10.1109/TBME.2017.2691399. [Epub ahead of print]

PMID:
28391188
17.

Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.

Xue Q, Mittal R, Zheng X, Bielamowicz S.

J Acoust Soc Am. 2012 Sep;132(3):1602-13. doi: 10.1121/1.4740485.

18.

Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.

Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X.

J Acoust Soc Am. 2009 Feb;125(2):632-5. doi: 10.1121/1.3056468.

PMID:
19206840
19.

Subject-Specific Computational Modeling of Evoked Rabbit Phonation.

Chang S, Novaleski CK, Kojima T, Mizuta M, Luo H, Rousseau B.

J Biomech Eng. 2016 Jan;138(1). doi: 10.1115/1.4032057.

20.

Simulation of vocal fold impact pressures with a self-oscillating finite-element model.

Tao C, Jiang JJ, Zhang Y.

J Acoust Soc Am. 2006 Jun;119(6):3987-94.

PMID:
16838541

Supplemental Content

Support Center