Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.
2.

Flame synthesis of carbon nanotubes in a rotating counterflow.

Hou SS, Chung DH, Lin TH.

J Nanosci Nanotechnol. 2009 Aug;9(8):4826-33.

PMID:
19928157
3.

Flame synthesis of carbon nano-onions enhanced by acoustic modulation.

Chung DH, Lin TH, Hou SS.

Nanotechnology. 2010 Oct 29;21(43):435604. doi: 10.1088/0957-4484/21/43/435604. Epub 2010 Oct 4.

PMID:
20890015
4.

Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments.

Hu WC, Lin TH.

Nanotechnology. 2016 Apr 22;27(16):165602. doi: 10.1088/0957-4484/27/16/165602. Epub 2016 Mar 10.

PMID:
26963760
5.

Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst.

Dhand V, Prasad JS, Rao MV, Bharadwaj S, Anjaneyulu Y, Jain PK.

Mater Sci Eng C Mater Biol Appl. 2013 Mar 1;33(2):758-62. doi: 10.1016/j.msec.2012.10.029. Epub 2012 Nov 7.

PMID:
25427484
6.

Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition.

Garg RK, Kim SS, Hash DB, Gore JP, Fisher TS.

J Nanosci Nanotechnol. 2008 Jun;8(6):3068-76.

PMID:
18681048
7.

Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and "grafting from" strategy.

Zhou L, Gao C, Zhu D, Xu W, Chen FF, Palkar A, Echegoyen L, Kong ES.

Chemistry. 2009;15(6):1389-96. doi: 10.1002/chem.200801642.

PMID:
19115308
8.

Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames.

Pan C, Liu Y, Cao F, Wang J, Ren Y.

Micron. 2004;35(6):461-8.

PMID:
15120131
9.

Permeation of nickel nanodots on carbon nanotubes: synthesis of 3D CNT-based nanomaterials.

Mohammadi S, Mohajerzadeh S, Gholizadeh A, Salehi F, Masoumi N.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15352-62. doi: 10.1021/am5038565. Epub 2014 Aug 26.

PMID:
25154711
10.

Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions.

Gao Y, Zhou YS, Park JB, Wang H, He XN, Luo HF, Jiang L, Lu YF.

Nanotechnology. 2011 Apr 22;22(16):165604. doi: 10.1088/0957-4484/22/16/165604. Epub 2011 Mar 11.

PMID:
21393817
11.

Nitrogen-doped carbon nanotubes from amine flames.

Liao L, Fang P, Pan C.

J Nanosci Nanotechnol. 2011 Feb;11(2):1060-7.

PMID:
21456139
12.

Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

Hwang EJ, Lee SK, Jeong MG, Lee YB, Lim DS.

J Nanosci Nanotechnol. 2012 Jul;12(7):5875-9.

PMID:
22966673
13.

Controlling the growth morphology of carbon nanotubes: from suspended bridges to upright forests.

Cao Y, Xu YQ.

Nanoscale. 2012 Mar 7;4(5):1682-7. doi: 10.1039/c2nr11405d. Epub 2012 Feb 9.

PMID:
22318533
14.

Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline.

Plonska-Brzezinska ME, Mazurczyk J, Palys B, Breczko J, Lapinski A, Dubis AT, Echegoyen L.

Chemistry. 2012 Feb 27;18(9):2600-8. doi: 10.1002/chem.201102175. Epub 2012 Jan 19.

PMID:
22262451
15.

Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.

Zhou LP, Ohta K, Kuroda K, Lei N, Matsuishi K, Gao L, Matsumoto T, Nakamura J.

J Phys Chem B. 2005 Mar 17;109(10):4439-47.

PMID:
16851515
16.

Upflow anaerobic sludge blanket reactor--a review.

Bal AS, Dhagat NN.

Indian J Environ Health. 2001 Apr;43(2):1-82. Review.

PMID:
12397675
17.

Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nano-Onions.

Mykhailiv O, Lapinski A, Molina-Ontoria A, Regulska E, Echegoyen L, Dubis AT, Plonska-Brzezinska ME.

Chemphyschem. 2015 Jul 20;16(10):2182-91. doi: 10.1002/cphc.201500061. Epub 2015 May 28.

PMID:
26017555
18.

GAS-PHASE FLAME SYNTHESIS AND PROPERTIES OF MAGNETIC IRON OXIDE NANOPARTICLES WITH REDUCED OXIDATION STATE.

Kumfer BM, Shinoda K, Jeyadevan B, Kennedy IM.

J Aerosol Sci. 2010 Mar 1;41(3):257-265.

19.

Boron-doped polygonal carbon nano-onions: synthesis and applications in electrochemical energy storage.

Plonska-Brzezinska ME, Mykhailiv O, Brzezinski K, Sulikowski B, Olejniczak Z, Gras M, Lota G, Molina-Ontoria A, Jakubczyk M, Echegoyen L.

Chemistry. 2017 Mar 24. doi: 10.1002/chem.201700914. [Epub ahead of print]

PMID:
28339126
20.

Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method.

Chen SY, Chang LW, Peng CW, Miao HY, Lue JT.

J Nanosci Nanotechnol. 2005 Nov;5(11):1887-92.

PMID:
16433426

Supplemental Content

Support Center