Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: a density functional theory study.

Zhang X, Chen Q, Tang J, Hu W, Zhang J.

Sci Rep. 2014 Apr 23;4:4762. doi: 10.1038/srep04762.

2.

Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review.

Zhang X, Gui Y, Dong X.

Nanoscale Res Lett. 2016 Dec;11(1):302. doi: 10.1186/s11671-016-1516-4. Epub 2016 Jun 18. Review.

3.

A Pt-doped TiO2 nanotube arrays sensor for detecting SF6 decomposition products.

Zhang X, Tie J, Zhang J.

Sensors (Basel). 2013 Oct 30;13(11):14764-76. doi: 10.3390/s131114764.

4.

Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

Zhang X, Li X, Luo C, Dong X, Zhou L.

Sensors (Basel). 2015 Nov 11;15(11):28367-84. doi: 10.3390/s151128367.

5.

Experimental Sensing and Density Functional Theory Study of H2S and SOF2 Adsorption on Au-Modified Graphene.

Zhang X, Yu L, Wu X, Hu W.

Adv Sci (Weinh). 2015 Sep 10;2(11):1500101. eCollection 2015 Nov.

6.

Gas sensitivity and sensing mechanism studies on Au-doped TiO₂ nanotube arrays for detecting SF₆ decomposed components.

Zhang X, Yu L, Tie J, Dong X.

Sensors (Basel). 2014 Oct 17;14(10):19517-32. doi: 10.3390/s141019517.

7.

TiO2-based gas sensor: a possible application to SO2.

Nisar J, Topalian Z, De Sarkar A, Österlund L, Ahuja R.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8516-22. doi: 10.1021/am4018835. Epub 2013 Aug 20.

PMID:
23915321
8.

TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2.

Zhang X, Zhang J, Jia Y, Xiao P, Tang J.

Sensors (Basel). 2012;12(3):3302-13. doi: 10.3390/s120303302. Epub 2012 Mar 7.

9.

Synthesis of Graphene-Based Sensors and Application on Detecting SF6 Decomposing Products: A Review.

Zhang X, Cui H, Gui Y.

Sensors (Basel). 2017 Feb 13;17(2). pii: E363. doi: 10.3390/s17020363.

10.

Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components.

Zhang X, Liu H, Ren J, Li J, Li X.

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt B:884-9. doi: 10.1016/j.saa.2014.09.109. Epub 2014 Oct 2.

PMID:
25459612
11.

Decomposition of SF6 in an RF plasma environment.

Shih M, Lee WJ, Tsai CH, Tsai PJ, Chen CY.

J Air Waste Manag Assoc. 2002 Nov;52(11):1274-80.

PMID:
12469713
12.

Adsorption and reactions of O2 on anatase TiO2.

Li YF, Aschauer U, Chen J, Selloni A.

Acc Chem Res. 2014 Nov 18;47(11):3361-8. doi: 10.1021/ar400312t. Epub 2014 Apr 17.

PMID:
24742024
13.

[Early warning for various internal faults of GIS based on ultraviolet spectroscopy].

Zhao Y, Wang XP, Hu HH, Dai DD, Long JC, Tian M, Zhu GW, Huang YG.

Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Feb;35(2):438-42. Chinese.

PMID:
25970908
14.

Mechanism and Application of Carbon Nanotube Sensors in SF6 Decomposed Production Detection: a Review.

Zhang X, Cui H, Gui Y, Tang J.

Nanoscale Res Lett. 2017 Dec;12(1):177. doi: 10.1186/s11671-017-1945-8. Epub 2017 Mar 9. Review.

15.

Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H₂S and SO₂.

Dong X, Zhang X, Wu X, Cui H, Chen D.

Sensors (Basel). 2016 Nov 10;16(11). pii: E1889.

16.

Development of a suitcase time-of-flight mass spectrometer for in situ fault diagnosis of SF6 -insulated switchgear by detection of decomposition products.

Hou K, Li J, Qu T, Tang B, Zhu L, Huang Y, Li H.

Rapid Commun Mass Spectrom. 2016 Aug;30 Suppl 1:38-43. doi: 10.1002/rcm.7624.

PMID:
27539413
17.

A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

Lu J, Zhang X, Wu X, Dai Z, Zhang J.

Sensors (Basel). 2015 Jun 9;15(6):13522-32. doi: 10.3390/s150613522.

18.

Adsorption properties of trifluoroacetic acid on anatase (101) and (001) surfaces: a density functional theory study.

Lamiel-Garcia O, Fernandez-Hevia D, Caballero AC, Illas F.

Phys Chem Chem Phys. 2015 Sep 28;17(36):23627-33. doi: 10.1039/c5cp03780h.

PMID:
26300332
19.

Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

Zhao W, Tian FH, Wang X, Zhao L, Wang Y, Fu A, Yuan S, Chu T, Xia L, Yu JC, Duan Y.

J Colloid Interface Sci. 2014 Sep 15;430:18-23. doi: 10.1016/j.jcis.2014.05.025. Epub 2014 May 23.

PMID:
24998049
20.

A periodic density functional theory study of tetrazole adsorption on anatase surfaces: potential application of tetrazole rings in dye-sensitized solar cells.

Chermahini AN, Hosseinzadeh B, Beni AS, Teimouri A, Moradi M.

J Mol Model. 2014 Feb;20(2):2086. doi: 10.1007/s00894-014-2086-y. Epub 2014 Feb 13.

PMID:
24522378

Supplemental Content

Support Center