Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids.

Cicerchi C, Li N, Kratzer J, Garcia G, Roncal-Jimenez CA, Tanabe K, Hunter B, Rivard CJ, Sautin YY, Gaucher EA, Johnson RJ, Lanaspa MA.

FASEB J. 2014 Aug;28(8):3339-50. doi: 10.1096/fj.13-243634. Epub 2014 Apr 22.

2.

Vernonia amygdalina Delile extract inhibits the hepatic gluconeogenesis through the activation of adenosine-5'monophosph kinase.

Wu XM, Ren T, Liu JF, Liu YJ, Yang LC, Jin X.

Biomed Pharmacother. 2018 Jul;103:1384-1391. doi: 10.1016/j.biopha.2018.04.135. Epub 2018 May 7.

PMID:
29864922
3.

Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis.

Zhang M, Lv X, Li J, Meng Z, Wang Q, Chang W, Li W, Chen L, Liu Y.

Mol Cell Endocrinol. 2012 Nov 5;363(1-2):122-30. doi: 10.1016/j.mce.2012.08.006. Epub 2012 Aug 16.

4.

Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats.

Jiang SJ, Dong H, Li JB, Xu LJ, Zou X, Wang KF, Lu FE, Yi P.

World J Gastroenterol. 2015 Jul 7;21(25):7777-85. doi: 10.3748/wjg.v21.i25.7777.

5.

Involvement of AMPK activation in the inhibition of hepatic gluconeogenesis by Ficus carica leaf extract in diabetic mice and HepG2 cells.

Zhang Y, Chen J, Zeng Y, Huang D, Xu Q.

Biomed Pharmacother. 2019 Jan;109:188-194. doi: 10.1016/j.biopha.2018.10.077. Epub 2018 Nov 2.

6.

Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.

Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B.

J Clin Invest. 2010 Jul;120(7):2355-69. doi: 10.1172/JCI40671. Epub 2010 Jun 23.

7.

Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, Chen Q, Li YH, Wang JJ, Kang YM, Zhu GQ.

Clin Sci (Lond). 2015 Nov;129(10):839-50. doi: 10.1042/CS20150009. Epub 2015 Jul 13.

PMID:
26201094
8.

Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

Wei S, Li W, Yu Y, Yao F, A L, Lan X, Guan F, Zhang M, Chen L.

Life Sci. 2015 Oct 15;139:8-15. doi: 10.1016/j.lfs.2015.07.032. Epub 2015 Aug 15.

PMID:
26285176
9.

Sodium arsenite induces orphan nuclear receptor SHP gene expression via AMP-activated protein kinase to inhibit gluconeogenic enzyme gene expression.

Chanda D, Kim SJ, Lee IK, Shong M, Choi HS.

Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E368-79. doi: 10.1152/ajpendo.00800.2007. Epub 2008 May 27.

10.

Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver.

Lanaspa MA, Cicerchi C, Garcia G, Li N, Roncal-Jimenez CA, Rivard CJ, Hunter B, Andrés-Hernando A, Ishimoto T, Sánchez-Lozada LG, Thomas J, Hodges RS, Mant CT, Johnson RJ.

PLoS One. 2012;7(11):e48801. doi: 10.1371/journal.pone.0048801. Epub 2012 Nov 9.

11.

[AMPD genes and urate metabolism].

Morisaki H, Morisaki T.

Nihon Rinsho. 2008 Apr;66(4):771-7. Review. Japanese.

PMID:
18409530
12.

Decreased fasting blood glucose is associated with impaired hepatic glucose production in thyroid-stimulating hormone receptor knockout mice.

Wang T, Xu J, Bo T, Zhou X, Jiang X, Gao L, Zhao J.

Endocr J. 2013;60(8):941-50. Epub 2013 May 10.

13.

Follicle-stimulating hormone enhances hepatic gluconeogenesis by GRK2-mediated AMPK hyperphosphorylation at Ser485 in mice.

Qi X, Guo Y, Song Y, Yu C, Zhao L, Fang L, Kong D, Zhao J, Gao L.

Diabetologia. 2018 May;61(5):1180-1192. doi: 10.1007/s00125-018-4562-x. Epub 2018 Feb 13.

PMID:
29442133
14.
15.

AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner.

Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, Lee MW, Ryu D, Kim YH, Noh JR, Lee CH, Chiang JY, Koo SH, Choi HS.

J Biol Chem. 2010 Oct 15;285(42):32182-91. doi: 10.1074/jbc.M110.134890. Epub 2010 Aug 5.

16.

Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids.

Li H, Lee J, He C, Zou MH, Xie Z.

Am J Physiol Endocrinol Metab. 2014 Jan 15;306(2):E197-209. doi: 10.1152/ajpendo.00202.2013. Epub 2013 Dec 3. Erratum in: Am J Physiol Endocrinol Metab. 2016 Nov 1;311(5):E899.

17.

AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver.

Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y, Kurihara Y, Kurihara H, Asano T.

J Biol Chem. 2008 Dec 5;283(49):33902-10. doi: 10.1074/jbc.M802537200. Epub 2008 Sep 17.

18.

AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle.

Tandelilin AA, Hirase T, Hudoyo AW, Cheng J, Toyama K, Morisaki H, Morisaki T.

BMC Endocr Disord. 2015 Mar 27;15:11. doi: 10.1186/s12902-015-0010-9. Erratum in: BMC Endocr Disord. 2015;15:80.

19.

The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production.

Yoon JY, Choi H, Jun HS.

Mar Drugs. 2017 Apr 5;15(4). pii: E106. doi: 10.3390/md15040106.

20.

Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase.

Berasi SP, Huard C, Li D, Shih HH, Sun Y, Zhong W, Paulsen JE, Brown EL, Gimeno RE, Martinez RV.

J Biol Chem. 2006 Sep 15;281(37):27167-77. Epub 2006 Jul 18.

Supplemental Content

Support Center