Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH.

Elife. 2014 Apr 22;3:e02450. doi: 10.7554/eLife.02450.

2.

Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase.

Sarubbi E, Monti F, Corti E, Miele A, Selva E.

Eur J Biochem. 2004 Aug;271(15):3146-54.

3.

Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation.

Vrentas CE, Gaal T, Berkmen MB, Rutherford ST, Haugen SP, Vassylyev DG, Ross W, Gourse RL.

J Mol Biol. 2008 Mar 21;377(2):551-64. doi: 10.1016/j.jmb.2008.01.042. Epub 2008 Jan 26. Erratum in: J Mol Biol. 2008 Jun 20;379(5):1130.

4.

Transcription inhibition by the depsipeptide antibiotic salinamide A.

Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH.

Elife. 2014 Apr 30;3:e02451. doi: 10.7554/eLife.02451.

5.

Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins.

Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG.

Cell. 2005 Aug 12;122(3):351-63.

6.

Rifamycin inhibition of WT and Rif-resistant Mycobacterium tuberculosis and Escherichia coli RNA polymerases in vitro.

Gill SK, Garcia GA.

Tuberculosis (Edinb). 2011 Sep;91(5):361-9. doi: 10.1016/j.tube.2011.05.002. Epub 2011 Jun 24.

PMID:
21704562
7.

Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme.

Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D, Fernández-Tornero C, Kulbachinskiy A, Murakami KS.

J Biol Chem. 2014 Aug 29;289(35):24549-59. doi: 10.1074/jbc.M114.584037. Epub 2014 Jun 27.

8.

Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center.

Feklistov A, Mekler V, Jiang Q, Westblade LF, Irschik H, Jansen R, Mustaev A, Darst SA, Ebright RH.

Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14820-5. doi: 10.1073/pnas.0802822105. Epub 2008 Sep 11.

9.

Transcription inactivation through local refolding of the RNA polymerase structure.

Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, Vassylyev DG.

Nature. 2009 Jan 15;457(7227):332-5. doi: 10.1038/nature07510. Epub 2008 Oct 22.

10.

Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.

Tagami S, Sekine S, Kumarevel T, Hino N, Murayama Y, Kamegamori S, Yamamoto M, Sakamoto K, Yokoyama S.

Nature. 2010 Dec 16;468(7326):978-82. doi: 10.1038/nature09573. Epub 2010 Dec 1.

PMID:
21124318
11.

A new spanner in the works of bacterial transcription.

Arnvig KB, Werner F.

Elife. 2014 Apr 22;3:e02840. doi: 10.7554/eLife.02840.

12.

Structural basis of transcription inhibition by antibiotic streptolydigin.

Temiakov D, Zenkin N, Vassylyeva MN, Perederina A, Tahirov TH, Kashkina E, Savkina M, Zorov S, Nikiforov V, Igarashi N, Matsugaki N, Wakatsuki S, Severinov K, Vassylyev DG.

Mol Cell. 2005 Sep 2;19(5):655-66.

13.

Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase.

Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA.

EMBO J. 2005 Feb 23;24(4):674-82. Epub 2005 Feb 3.

14.

Proximity between nucleotide/dinucleotide and metal ion binding sites in DNA-dependent RNA polymerase from Escherichia coli.

Tyagi SC, Wu FY.

Biochemistry. 1992 Jul 21;31(28):6447-53. Erratum in: Biochemistry 1994 Aug 2;33(30):9032.

PMID:
1321660
15.

The RNA polymerase "switch region" is a target for inhibitors.

Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, Sarafianos S, Tuske S, Patel J, Jansen R, Irschik H, Arnold E, Ebright RH.

Cell. 2008 Oct 17;135(2):295-307. doi: 10.1016/j.cell.2008.09.033.

16.

Structural basis of transcription initiation.

Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH.

Science. 2012 Nov 23;338(6110):1076-80. doi: 10.1126/science.1227786. Epub 2012 Oct 18.

17.

The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site.

Tupin A, Gualtieri M, Leonetti JP, Brodolin K.

EMBO J. 2010 Aug 4;29(15):2527-37. doi: 10.1038/emboj.2010.135. Epub 2010 Jun 18.

18.

Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation.

Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD Jr, Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, Arnold E.

Cell. 2005 Aug 26;122(4):541-52.

19.

X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme.

Murakami KS.

J Biol Chem. 2013 Mar 29;288(13):9126-34. doi: 10.1074/jbc.M112.430900. Epub 2013 Feb 6.

20.

Bacterial Transcription as a Target for Antibacterial Drug Development.

Ma C, Yang X, Lewis PJ.

Microbiol Mol Biol Rev. 2016 Jan 13;80(1):139-60. doi: 10.1128/MMBR.00055-15. Print 2016 Mar. Review.

Supplemental Content

Support Center