Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors.

Saino H, Shimizu T, Hiratake J, Nakatsu T, Kato H, Sakata K, Mizutani M.

J Biol Chem. 2014 Jun 13;289(24):16826-34. doi: 10.1074/jbc.M114.553271. Epub 2014 Apr 21.

2.

Cloning of beta-primeverosidase from tea leaves, a key enzyme in tea aroma formation.

Mizutani M, Nakanishi H, Ema J, Ma SJ, Noguchi E, Inohara-Ochiai M, Fukuchi-Mizutani M, Nakao M, Sakata K.

Plant Physiol. 2002 Dec;130(4):2164-76.

3.

Furcatin hydrolase from Viburnum furcatum Blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1.

Ahn YO, Mizutani M, Saino H, Sakata K.

J Biol Chem. 2004 May 28;279(22):23405-14. Epub 2004 Feb 19.

4.

Substrate specificity of beta-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing.

Ma SJ, Mizutani M, Hiratake J, Hayashi K, Yagi K, Watanabe N, Sakata K.

Biosci Biotechnol Biochem. 2001 Dec;65(12):2719-29.

5.

Expression and biochemical characterization of beta-primeverosidase and application of beta-primeverosylamidine to affinity purification.

Saino H, Mizutani M, Hiratake J, Sakata K.

Biosci Biotechnol Biochem. 2008 Feb;72(2):376-83. Epub 2008 Feb 7.

6.
8.

Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma β-Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases.

Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, Ohba Y, Dohra H, Asai T, Matsui K, Mizutani M, Watanabe N, Ohnishi T.

Plant Physiol. 2015 Jun;168(2):464-77. doi: 10.1104/pp.15.00403. Epub 2015 Apr 28.

9.

(S)-linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves.

Guo W, Hosoi R, Sakata K, Watanabe N, Yagi A, Ina K, Luo S.

Biosci Biotechnol Biochem. 1994 Aug;58(8):1532-4.

10.

Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?

Gui J, Fu X, Zhou Y, Katsuno T, Mei X, Deng R, Xu X, Zhang L, Dong F, Watanabe N, Yang Z.

J Agric Food Chem. 2015 Aug 12;63(31):6905-14. doi: 10.1021/acs.jafc.5b02741. Epub 2015 Aug 3.

PMID:
26212085
11.
12.

Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers.

Zhou Y, Dong F, Kunimasa A, Zhang Y, Cheng S, Lu J, Zhang L, Murata A, Mayer F, Fleischmann P, Watanabe N, Yang Z.

J Agric Food Chem. 2014 Aug 13;62(32):8042-50. doi: 10.1021/jf5022658. Epub 2014 Aug 1.

PMID:
25065942
13.

Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.

Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE.

J Mol Biol. 2008 Feb 1;375(5):1293-305. Epub 2007 Nov 12.

PMID:
18078955
14.

Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.

Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U.

J Mol Biol. 2006 Apr 7;357(4):1211-25. Epub 2006 Jan 25.

PMID:
16483609
15.

Computational and experimental analyses of furcatin hydrolase for substrate specificity studies of disaccharide-specific glycosidases.

Daiyasu H, Saino H, Tomoto H, Mizutani M, Sakata K, Toh H.

J Biochem. 2008 Oct;144(4):467-75. doi: 10.1093/jb/mvn095. Epub 2008 Jul 30.

PMID:
18667453
16.

The mechanisms by which family 10 glycoside hydrolases bind decorated substrates.

Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CM, Ferreira LM, Nagy T, Clark SJ, Davies GJ, Gilbert HJ.

J Biol Chem. 2004 Mar 5;279(10):9597-605. Epub 2003 Dec 10.

17.

Computational analysis of glycoside hydrolase family 1 specificities.

Hill AD, Reilly PJ.

Biopolymers. 2008 Nov;89(11):1021-31. doi: 10.1002/bip.21052.

PMID:
18615662
18.

Structural basis for broad substrate specificity in higher plant beta-D-glucan glucohydrolases.

Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB.

Plant Cell. 2002 May;14(5):1033-52.

19.

Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis.

Chuankhayan P, Hsieh CY, Huang YC, Hsieh YY, Guan HH, Hsieh YC, Tien YC, Chen CD, Chiang CM, Chen CJ.

J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub 2010 May 13.

20.

Crystal structure of a bacterial unsaturated glucuronyl hydrolase with specificity for heparin.

Nakamichi Y, Mikami B, Murata K, Hashimoto W.

J Biol Chem. 2014 Feb 21;289(8):4787-97. doi: 10.1074/jbc.M113.522573. Epub 2014 Jan 8.

Supplemental Content

Support Center