Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice.

McKenna S, Michaelis KA, Agboke F, Liu T, Han K, Yang G, Dennery PA, Wright CJ.

Am J Physiol Lung Cell Mol Physiol. 2014 Jun 15;306(12):L1078-89. doi: 10.1152/ajplung.00001.2014.

PMID:
24748603
2.

IκBβ-mediated NF-κB activation confers protection against hyperoxic lung injury.

Michaelis KA, Agboke F, Liu T, Han K, Muthu M, Galambos C, Yang G, Dennery PA, Wright CJ.

Am J Respir Cell Mol Biol. 2014 Feb;50(2):429-38. doi: 10.1165/rcmb.2013-0303OC.

PMID:
24066808
3.

NO inhibits hyperoxia-induced NF-κB activation in neonatal pulmonary microvascular endothelial cells.

Wright CJ, Agboke F, Chen F, LA P, Yang G, Dennery PA.

Pediatr Res. 2010 Dec;68(6):484-9. doi: 10.1203/PDR.0b013e3181f917b0.

PMID:
20805787
4.

Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization.

Iosef C, Alastalo TP, Hou Y, Chen C, Adams ES, Lyu SC, Cornfield DN, Alvira CM.

Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1023-36. doi: 10.1152/ajplung.00230.2011.

PMID:
22367785
5.

Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury.

de Visser YP, Walther FJ, Laghmani el H, Boersma H, van der Laarse A, Wagenaar GT.

Respir Res. 2009 Apr 29;10:30. doi: 10.1186/1465-9921-10-30.

PMID:
19402887
6.

Maturational differences in lung NF-kappaB activation and their role in tolerance to hyperoxia.

Yang G, Abate A, George AG, Weng YH, Dennery PA.

J Clin Invest. 2004 Sep;114(5):669-78.

PMID:
15343385
7.

Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats.

Lin YJ, Markham NE, Balasubramaniam V, Tang JR, Maxey A, Kinsella JP, Abman SH.

Pediatr Res. 2005 Jul;58(1):22-9.

PMID:
15879297
8.

[Influence of human mesenchymal stem cells on hyperoxia-exposed newborn rats by RAGE-NF-κB signaling in lung].

Tian ZF, Ji P, Li YH, Zhao S, Wang X.

Zhonghua Er Ke Za Zhi. 2012 May;50(5):356-60. Chinese.

PMID:
22883037
9.

Nuclear factor-κB (NF-κB) inhibitory protein IκBβ determines apoptotic cell death following exposure to oxidative stress.

Wright CJ, Agboke F, Muthu M, Michaelis KA, Mundy MA, La P, Yang G, Dennery PA.

J Biol Chem. 2012 Feb 24;287(9):6230-9. doi: 10.1074/jbc.M111.318246.

PMID:
22223647
10.

Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury.

Poonyagariyagorn HK, Metzger S, Dikeman D, Mercado AL, Malinina A, Calvi C, McGrath-Morrow S, Neptune ER.

Am J Respir Cell Mol Biol. 2014 Sep;51(3):380-90. doi: 10.1165/rcmb.2013-0043OC.

PMID:
24673633
11.

Glucocorticoids aggravate hyperoxia-induced lung injury through decreased nuclear factor-kappa B activity.

Barazzone-Argiroffo C, Pagano A, Juge C, Métrailler I, Rochat A, Vesin C, Donati Y.

Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L197-204.

PMID:
12388343
12.

Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway.

Wright CJ, Zhuang T, La P, Yang G, Dennery PA.

Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L296-306. doi: 10.1152/ajplung.90499.2008.

PMID:
19074556
13.

[Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].

Wang XL, Xue XD.

Zhonghua Er Ke Za Zhi. 2009 Jun;47(6):446-51. Chinese.

PMID:
19951473
14.

Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats.

Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, Abman SH.

Am J Physiol Lung Cell Mol Physiol. 2005 Oct;289(4):L529-35.

PMID:
15908474
15.

Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.

Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH.

Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1073-84.

PMID:
17209139
16.

[Effects of hyperoxia on erythropoietin receptor expression in lung development of neonatal rats].

Wang XL, Fu JH, Xue XD.

Zhonghua Er Ke Za Zhi. 2011 May;49(5):361-6. Chinese.

PMID:
21624288
17.

Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia.

Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH.

Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L1068-78.

PMID:
16829629
18.

The protective effect of overexpression of extracellular superoxide dismutase on nitric oxide bioavailability in the lung after exposure to hyperoxia stress.

Ahmed MN, Codipilly C, Hogg N, Auten RL.

Exp Lung Res. 2011 Feb;37(1):10-7. doi: 10.3109/01902148.2010.497893.

PMID:
21077778
19.

Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension.

Lee KJ, Berkelhamer SK, Kim GA, Taylor JM, O'Shea KM, Steinhorn RH, Farrow KN.

Am J Respir Cell Mol Biol. 2014 Feb;50(2):369-78. doi: 10.1165/rcmb.2013-0118OC.

PMID:
24032519
20.

Role for nuclear factor-kappaB in augmented lung injury because of interaction between hyperoxia and high stretch ventilation.

Liu YY, Liao SK, Huang CC, Tsai YH, Quinn DA, Li LF.

Transl Res. 2009 Nov;154(5):228-40. doi: 10.1016/j.trsl.2009.06.006.

PMID:
19840764

Supplemental Content

Support Center