Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Low temperature heat capacity of a severely deformed metallic glass.

Bünz J, Brink T, Tsuchiya K, Meng F, Wilde G, Albe K.

Phys Rev Lett. 2014 Apr 4;112(13):135501.

PMID:
24745435
2.

Impact of plastic deformation and shear band formation on the boson heat capacity peak of a bulk metallic glass.

Mitrofanov YP, Peterlechner M, Divinski SV, Wilde G.

Phys Rev Lett. 2014 Apr 4;112(13):135901.

PMID:
24745440
3.

Universal link between the boson peak and transverse phonons in glass.

Shintani H, Tanaka H.

Nat Mater. 2008 Nov;7(11):870-7. doi: 10.1038/nmat2293.

PMID:
18849975
4.

Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites.

Kokotin V, Hermann H, Eckert J.

J Phys Condens Matter. 2011 Oct 26;23(42):425403. doi: 10.1088/0953-8984/23/42/425403.

PMID:
21982961
5.

Development of a Debye heat capacity model for vibrational modes with a gap in the density of states.

Schliesser JM, Woodfield BF.

J Phys Condens Matter. 2015 Jul 22;27(28):285402. doi: 10.1088/0953-8984/27/28/285402.

PMID:
26126165
6.

Imprinting bulk amorphous alloy at room temperature.

Kim SY, Park ES, Ott RT, Lograsso TA, Huh MY, Kim DH, Eckert J, Lee MH.

Sci Rep. 2015 Nov 13;5:16540. doi: 10.1038/srep16540.

7.

Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.

Magoń A, Pyda M.

Carbohydr Res. 2011 Nov 29;346(16):2558-66. doi: 10.1016/j.carres.2011.08.022.

PMID:
22000766
8.

Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.

Cui YY, Wang TL, Li JH, Dai Y, Liu BX.

Phys Chem Chem Phys. 2011 Mar 7;13(9):4103-8. doi: 10.1039/c0cp01722a.

PMID:
21229150
9.

Low-temperature excess heat capacity in fresnoite glass and crystal.

Nakamura K, Takahashi Y, Fujiwara T.

Sci Rep. 2014 Oct 6;4:6523. doi: 10.1038/srep06523.

10.

Effective temperature dynamics of shear bands in metallic glasses.

Daub EG, Klaumünzer D, Löffler JF.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062405.

PMID:
25615110
11.

Controlled rejuvenation of amorphous metals with thermal processing.

Wakeda M, Saida J, Li J, Ogata S.

Sci Rep. 2015 May 26;5:10545. doi: 10.1038/srep10545.

13.

HRTEM analysis of nanocrystallization during uniaxial compression of a bulk metallic glass at room temperature.

Deng YF, He LL, Zhang QS, Zhang HF, Ye HQ.

Ultramicroscopy. 2004 Jan;98(2-4):201-8.

PMID:
15046800
14.

Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures.

Chen C, Ren J, Wang G, Dahmen KA, Liaw PK.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012113.

PMID:
26274131
15.

Theory of specific heat in glass-forming systems.

Hentschel HG, Ilyin V, Procaccia I, Schupper N.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061504.

PMID:
19256843
16.

Softening caused by profuse shear banding in a bulk metallic glass.

Bei H, Xie S, George EP.

Phys Rev Lett. 2006 Mar 17;96(10):105503.

PMID:
16605757
17.

The origin of the boson peak and thermal conductivity plateau in low-temperature glasses.

Lubchenko V, Wolynes PG.

Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1515-8.

18.

Liquid-liquid transition in a strong bulk metallic glass-forming liquid.

Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R.

Nat Commun. 2013;4:2083. doi: 10.1038/ncomms3083.

PMID:
23817404
19.

Vibrational dynamics and boson peak in a supercooled polydisperse liquid.

Abraham SE, Bagchi B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031506.

PMID:
20365739
20.

The shear band controlled deformation in metallic glass: a perspective from fracture.

Yang GN, Shao Y, Yao KF.

Sci Rep. 2016 Feb 22;6:21852. doi: 10.1038/srep21852.

Supplemental Content

Support Center