Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements.

Hasan MS, Carpenter N, Wei TL, McNally D, Ahmed I, Boszczyk BM.

J Appl Biomater Funct Mater. 2014 Dec 30;12(3):203-9. doi: 10.5301/jabfm.5000167.

PMID:
24744228
2.

Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement.

Lopez-Heredia MA, Sariibrahimoglu K, Yang W, Bohner M, Yamashita D, Kunstar A, van Apeldoorn AA, Bronkhorst EM, Félix Lanao RP, Leeuwenburgh SC, Itatani K, Yang F, Salmon P, Wolke JG, Jansen JA.

Acta Biomater. 2012 Jan;8(1):404-14. doi: 10.1016/j.actbio.2011.08.010. Epub 2011 Aug 18.

PMID:
21884833
3.

Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.

Maenz S, Kunisch E, Mühlstädt M, Böhm A, Kopsch V, Bossert J, Kinne RW, Jandt KD.

J Mech Behav Biomed Mater. 2014 Nov;39:328-38. doi: 10.1016/j.jmbbm.2014.07.028. Epub 2014 Aug 7.

PMID:
25171749
4.

Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.

Smith BT, Santoro M, Grosfeld EC, Shah SR, van den Beucken JJJP, Jansen JA, Mikos AG.

Acta Biomater. 2017 Mar 1;50:68-77. doi: 10.1016/j.actbio.2016.12.024. Epub 2016 Dec 10.

PMID:
27956363
5.

Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite.

Lian Q, Li DC, He JK, Wang Z.

Proc Inst Mech Eng H. 2008 Apr;222(3):347-53.

PMID:
18491703
6.

Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

Mohammadi MS, Ahmed I, Muja N, Rudd CD, Bureau MN, Nazhat SN.

J Mater Sci Mater Med. 2011 Dec;22(12):2659-72. doi: 10.1007/s10856-011-4453-x. Epub 2011 Oct 16.

PMID:
22002512
7.

Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics.

Blom EJ, Klein-Nulend J, Wolke JG, van Waas MA, Driessens FC, Burger EH.

J Biomed Mater Res. 2002 Feb;59(2):265-72.

PMID:
11745562
8.

Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures.

Xu HH, Burguera EF, Carey LE.

Biomaterials. 2007 Sep;28(26):3786-96. Epub 2007 May 26.

9.

Comparison and preparation of multilayered polylactic acid fabric strengthen calcium phosphate-based bone substitutes for orthopedic applications.

Chen WC, Ko CL, Yang JK, Wu HY, Lin JH.

J Artif Organs. 2016 Mar;19(1):70-9. doi: 10.1007/s10047-015-0863-8. Epub 2015 Aug 18.

PMID:
26280316
10.

Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.

Sariibrahimoglu K, An J, van Oirschot BA, Nijhuis AW, Eman RM, Alblas J, Wolke JG, van den Beucken JJ, Leeuwenburgh SC, Jansen JA.

Tissue Eng Part A. 2014 Nov;20(21-22):2870-82. doi: 10.1089/ten.TEA.2013.0670. Epub 2014 Jun 16.

PMID:
24819744
11.

Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.

Xu HH, Quinn JB, Takagi S, Chow LC.

Biomaterials. 2004 Mar;25(6):1029-37.

PMID:
14615168
12.

Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh.

Losee JE, Karmacharya J, Gannon FH, Slemp AE, Ong G, Hunenko O, Gorden AD, Bartlett SP, Kirschner RE.

J Craniofac Surg. 2003 Jan;14(1):117-24.

PMID:
12544233
13.

Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates.

Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P, Weiss P, Daculsi G, Bouler JM, Guicheux J.

Biomaterials. 2007 Feb;28(6):956-65. Epub 2006 Nov 22.

PMID:
17123598
14.

Short-fibre reinforcement of calcium phosphate bone cement.

Buchanan F, Gallagher L, Jack V, Dunne N.

Proc Inst Mech Eng H. 2007 Feb;221(2):203-11.

PMID:
17385574
15.

Calcium phosphate cement reinforced by polypeptide copolymers.

Lin J, Zhang S, Chen T, Liu C, Lin S, Tian X.

J Biomed Mater Res B Appl Biomater. 2006 Feb;76(2):432-9.

PMID:
16184535
16.

Development and cell response of a new biodegradable composite scaffold for guided bone regeneration.

Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L.

J Mater Sci Mater Med. 2004 Apr;15(4):419-22.

PMID:
15332610
17.

[An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calcium 
phosphate cement].

Wu J, Ding Z, Lei Q, Li M, Liang Y, Lu T.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016 Sep 28;41(9):946-54. doi: 10.11817/j.issn.1672-7347.2016.09.009. Chinese.

18.

Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite.

Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD.

J Biomed Mater Res B Appl Biomater. 2009 Apr;89(1):18-27. doi: 10.1002/jbm.b.31182.

PMID:
18800348
19.

In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.

Navarro M, Ginebra MP, Planell JA, Barrias CC, Barbosa MA.

Acta Biomater. 2005 Jul;1(4):411-9.

PMID:
16701822
20.

Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.

Xu HH, Smith DT, Simon CG.

Biomaterials. 2004 Aug;25(19):4615-26.

PMID:
15120507

Supplemental Content

Support Center