Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

Taylor AF, Rylott EL, Anderson CW, Bruce NC.

PLoS One. 2014 Apr 15;9(4):e93793. doi: 10.1371/journal.pone.0093793.

2.
3.

Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.

Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC.

New Phytol. 2011 Apr;190(1):125-37. doi: 10.1111/j.1469-8137.2010.03606.x.

4.

AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana.

Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T.

Plant Cell Physiol. 2011 Aug;52(8):1433-42. doi: 10.1093/pcp/pcr089.

PMID:
21742768
5.
6.

The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.

Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK.

Metallomics. 2013 Sep;5(9):1262-75. doi: 10.1039/c3mt00111c.

PMID:
23835944
7.

Role of Fe-responsive genes in bioreduction and transport of ionic gold to roots of Arabidopsis thaliana during synthesis of gold nanoparticles.

Jain A, Sinilal B, Starnes DL, Sanagala R, Krishnamurthy S, Sahi SV.

Plant Physiol Biochem. 2014 Nov;84:189-96. doi: 10.1016/j.plaphy.2014.09.013.

PMID:
25289518
8.

Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis.

Tiwari M, Krishnamurthy S, Shukla D, Kiiskila J, Jain A, Datta R, Sharma N, Sahi SV.

Sci Rep. 2016 Feb 23;6:21733. doi: 10.1038/srep21733.

9.

Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana.

Nair PM, Chung IM.

Environ Sci Pollut Res Int. 2014;21(14):8858-69. doi: 10.1007/s11356-014-2822-y.

PMID:
24723349
10.

Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses.

Buckhout TJ, Yang TJ, Schmidt W.

BMC Genomics. 2009 Apr 6;10:147. doi: 10.1186/1471-2164-10-147.

11.

Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.

Ahn SJ, Shin R, Schachtman DP.

Plant Physiol. 2004 Mar;134(3):1135-45.

12.

Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.

Korenkov V, King B, Hirschi K, Wagner GJ.

Plant Biotechnol J. 2009 Apr;7(3):219-26. doi: 10.1111/j.1467-7652.2008.00390.x.

13.
14.

Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana.

Zhao CR, Ikka T, Sawaki Y, Kobayashi Y, Suzuki Y, Hibino T, Sato S, Sakurai N, Shibata D, Koyama H.

BMC Plant Biol. 2009 Mar 23;9:32. doi: 10.1186/1471-2229-9-32.

15.

Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L.

Plant Physiol. 2013 May;162(1):180-94. doi: 10.1104/pp.112.212407.

16.

Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana.

Nishida S, Kato A, Tsuzuki C, Yoshida J, Mizuno T.

Int J Mol Sci. 2015 Apr 27;16(5):9420-30. doi: 10.3390/ijms16059420.

17.

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D.

Plant Physiol. 2009 Mar;149(3):1302-15. doi: 10.1104/pp.108.133348.

18.

dhm1, an Arabidopsis mutant with increased sensitivity to alkamides shows tumorous shoot development and enhanced lateral root formation.

Pelagio-Flores R, Ortiz-Castro R, López-Bucio J.

Plant Mol Biol. 2013 Apr;81(6):609-25. doi: 10.1007/s11103-013-0023-6.

PMID:
23412925
19.

Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance.

Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J.

Plant Physiol. 2009 Oct;151(2):768-81. doi: 10.1104/pp.109.144808.

20.

A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance.

Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJ, Blaudez D, Chalot M, Sanders D.

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8532-7.

Items per page

Supplemental Content

Support Center