Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 251

1.

Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules.

An Q, Zhang F, Li L, Wang J, Zhang J, Zhou L, Tang W.

ACS Appl Mater Interfaces. 2014 May 14;6(9):6537-44. doi: 10.1021/am500074s. Epub 2014 Apr 23.

PMID:
24735205
2.

Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.

An Q, Zhang F, Li L, Wang J, Sun Q, Zhang J, Tang W, Deng Z.

ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3691-8. doi: 10.1021/acsami.5b00308. Epub 2015 Feb 5.

PMID:
25623199
3.

Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells.

Li D, Liu Q, Zhen J, Fang Z, Chen X, Yang S.

ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2720-2729. doi: 10.1021/acsami.6b13461. Epub 2017 Jan 11.

PMID:
28045489
4.

Improved performances of PCDTBT:PC71BM BHJ solar cells through incorporating small molecule donor.

Zhu Y, Yang L, Zhao S, Huang Y, Xu Z, Yang Q, Wang P, Li Y, Xu X.

Phys Chem Chem Phys. 2015 Oct 28;17(40):26777-82. doi: 10.1039/c5cp03888j.

PMID:
26395803
5.

An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

Bi PQ, Wu B, Zheng F, Xu WL, Yang XY, Feng L, Zhu F, Hao XT.

ACS Appl Mater Interfaces. 2016 Sep 7;8(35):23212-21. doi: 10.1021/acsami.6b07612. Epub 2016 Aug 25.

PMID:
27525544
6.

Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells.

Papamakarios V, Polydorou E, Soultati A, Droseros N, Tsikritzis D, Douvas AM, Palilis L, Fakis M, Kennou S, Argitis P, Vasilopoulou M.

ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1194-205. doi: 10.1021/acsami.5b09533. Epub 2016 Jan 6.

PMID:
26696337
7.

All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

Nam S, Shin M, Park S, Lee S, Kim H, Kim Y.

Phys Chem Chem Phys. 2012 Nov 21;14(43):15046-53. doi: 10.1039/c2cp43002a. Epub 2012 Oct 4.

PMID:
23034534
8.

Squaraine based solution processed inverted bulk heterojunction solar cells processed in air.

Varma PC, Namboothiry MA.

Phys Chem Chem Phys. 2016 Feb 7;18(5):3438-43. doi: 10.1039/c5cp05080d.

PMID:
26426261
9.

Solution-processed squaraine bulk heterojunction photovoltaic cells.

Wei G, Wang S, Renshaw K, Thompson ME, Forrest SR.

ACS Nano. 2010 Apr 27;4(4):1927-34. doi: 10.1021/nn100195j.

PMID:
20359189
10.

Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

Kang TE, Cho HH, Cho CH, Kim KH, Kang H, Lee M, Lee S, Kim B, Im C, Kim BJ.

ACS Appl Mater Interfaces. 2013 Feb;5(3):861-8. doi: 10.1021/am302479u. Epub 2013 Jan 25.

PMID:
23289501
11.

[Influence of P3HT : PCBM film formation process on the performance of polymer solar cells].

Zhou JP, Chen XH, Xu Z.

Guang Pu Xue Yu Guang Pu Fen Xi. 2011 Oct;31(10):2684-7. Chinese.

PMID:
22250535
12.

Highly efficient exciton harvesting and charge transport in ternary blend solar cells based on wide- and low-bandgap polymers.

Wang Y, Ohkita H, Benten H, Ito S.

Phys Chem Chem Phys. 2015 Oct 28;17(40):27217-24. doi: 10.1039/c5cp05161d.

PMID:
26418363
13.

Application of solution processable squaraine dyes as electron donors for organic bulk-heterojunction solar cells.

Rao BA, Yesudas K, Kumar GS, Bhanuprakash K, Rao VJ, Sharma GD, Singh SP.

Photochem Photobiol Sci. 2013 Sep;12(9):1688-99. doi: 10.1039/c3pp50087j.

PMID:
23788052
14.

Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM.

Pradeep UW, Villani M, Calestani D, Cristofolini L, Iannotta S, Zappettini A, Coppedè N.

Nanotechnology. 2017 Jan 20;28(3):035403. Epub 2016 Dec 14.

PMID:
27966476
15.

Morphology control of a polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor-acceptor diblock copolymer.

Lee JU, Jung JW, Emrick T, Russell TP, Jo WH.

Nanotechnology. 2010 Mar 12;21(10):105201. doi: 10.1088/0957-4484/21/10/105201. Epub 2010 Feb 15.

PMID:
20154377
16.

Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.

Guo J, Liang Y, Szarko J, Lee B, Son HJ, Rolczynski BS, Yu L, Chen LX.

J Phys Chem B. 2010 Jan 21;114(2):742-8. doi: 10.1021/jp909135k. Erratum in: J Phys Chem B. 2010 Apr 8;114(13):4746. Son, Hae Jun [corrected to Son, Hae Jung].

PMID:
20038154
17.

Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

Chen CP, Chan SH, Chao TC, Ting C, Ko BT.

J Am Chem Soc. 2008 Sep 24;130(38):12828-33. doi: 10.1021/ja801877k. Epub 2008 Aug 29.

PMID:
18759400
18.

Efficient Exciton Harvesting through Long-Range Energy Transfer.

Wang Y, Ohkita H, Benten H, Ito S.

Chemphyschem. 2015 Apr 27;16(6):1263-7. doi: 10.1002/cphc.201402740. Epub 2015 Jan 16.

PMID:
25598451
19.

Enhanced performance of polymer solar cells by employing a ternary cascade energy structure.

An Q, Zhang F, Li L, Zhuo Z, Zhang J, Tang W, Teng F.

Phys Chem Chem Phys. 2014 Aug 14;16(30):16103-9. doi: 10.1039/c4cp01411a.

PMID:
24967655
20.

Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films.

Wei G, Lunt RR, Sun K, Wang S, Thompson ME, Forrest SR.

Nano Lett. 2010 Sep 8;10(9):3555-9. doi: 10.1021/nl1018194.

PMID:
20681597

Supplemental Content

Support Center