Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Labeling native bacterial RNA in live cells.

Toran P, Smolina I, Driscoll H, Ding F, Sun Y, Cantor CR, Broude NE.

Cell Res. 2014 Jul;24(7):894-7. doi: 10.1038/cr.2014.47. No abstract available.

2.

Imaging of RNA in live cells.

Armitage BA.

Curr Opin Chem Biol. 2011 Dec;15(6):806-12. doi: 10.1016/j.cbpa.2011.10.006. Review.

PMID:
22055496
3.

Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer.

Sunbul M, Jäschke A.

Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13401-4. doi: 10.1002/anie.201306622. No abstract available.

PMID:
24133044
4.

An artificial aptazyme-based riboswitch and its cascading system in E. coli.

Ogawa A, Maeda M.

Chembiochem. 2008 Jan 25;9(2):206-9. No abstract available.

PMID:
18098257
5.

Visualization of induced RNA in single bacterial cells.

Borogovac A, Broude NE.

Methods Mol Biol. 2011;714:189-99. doi: 10.1007/978-1-61779-005-8_12.

PMID:
21431742
6.

Reengineering a natural riboswitch by dual genetic selection.

Nomura Y, Yokobayashi Y.

J Am Chem Soc. 2007 Nov 14;129(45):13814-5. No abstract available.

PMID:
17944473
7.

Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes.

Sinha K, Jen-Jacobson L, Rule GS.

Biochemistry. 2011 Nov 29;50(47):10189-91. doi: 10.1021/bi201496d.

8.

Random walks to synthetic riboswitches--a high-throughput selection based on cell motility.

Topp S, Gallivan JP.

Chembiochem. 2008 Jan 25;9(2):210-3. No abstract available.

PMID:
18098254
9.

Selective and quantitative cell detection based both on aptamers and the conventional cell-staining methods.

Kim J, Lee GH, Jung W, Hah SS.

Biosens Bioelectron. 2013 May 15;43:362-5. doi: 10.1016/j.bios.2012.12.050.

PMID:
23357002
10.

A universal method for labeling native RNA in live bacterial cells.

Smolina I, Broude N.

Methods Mol Biol. 2015;1316:75-85. doi: 10.1007/978-1-4939-2730-2_7.

PMID:
25967054
11.

Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts.

Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, Waldsich C, von Haeseler A, Schroeder R.

Nucleic Acids Res. 2010 Jun;38(11):3794-808. doi: 10.1093/nar/gkq032.

12.

In vitro and in vivo production and purification of circular RNA aptamer.

Umekage S, Kikuchi Y.

J Biotechnol. 2009 Feb 23;139(4):265-72. doi: 10.1016/j.jbiotec.2008.12.012.

PMID:
19138712
13.

Nuclease cleavage-assisted target recycling for signal amplification of free-label impedimetric aptasensors.

Tang J, Tang D, Zhou J, Yang H, Chen G.

Chem Commun (Camb). 2012 Mar 7;48(20):2627-9. doi: 10.1039/c2cc17536c.

PMID:
22297842
14.

DNA polymerase I activity in Escherichia coli is influenced by spot 42 RNA.

Polayes DA, Rice PW, Dahlberg JE.

J Bacteriol. 1988 May;170(5):2083-8.

15.

RNA visualization in live bacterial cells using fluorescent protein complementation.

Valencia-Burton M, McCullough RM, Cantor CR, Broude NE.

Nat Methods. 2007 May;4(5):421-7.

PMID:
17401371
16.
17.

Widespread genetic switches and toxicity resistance proteins for fluoride.

Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR.

Science. 2012 Jan 13;335(6065):233-5. doi: 10.1126/science.1215063.

18.

Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs.

Kawai R, Kimoto M, Ikeda S, Mitsui T, Endo M, Yokoyama S, Hirao I.

J Am Chem Soc. 2005 Dec 14;127(49):17286-95.

PMID:
16332078
19.

Electron microscopic studies on the biosynthesis of the 50 s ribosomal subunit in Escherichia coli.

Matsuura S, Tashiro Y.

J Mol Biol. 1970 Feb 14;47(3):383-91. No abstract available.

PMID:
4190627
20.

Chemiluminescent universal probe for bacterial ribotyping.

Gustaferro CA, Persing DH.

J Clin Microbiol. 1992 Apr;30(4):1039-41.

Items per page

Supplemental Content

Support Center