Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 193

1.

High-performance organic complementary inverters using monolayer graphene electrodes.

Jeong YJ, Jang J, Nam S, Kim K, Kim LH, Park S, An TK, Park CE.

ACS Appl Mater Interfaces. 2014 May 14;6(9):6816-24. doi: 10.1021/am500618g.

PMID:
24731001
2.

Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.

Basu S, Lee MC, Wang YH.

Phys Chem Chem Phys. 2014 Aug 21;16(31):16701-10. doi: 10.1039/c3cp55440f.

PMID:
25000388
3.

Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.

Lee WH, Park J, Sim SH, Lim S, Kim KS, Hong BH, Cho K.

J Am Chem Soc. 2011 Mar 30;133(12):4447-54. doi: 10.1021/ja1097463.

PMID:
21381751
4.

Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

Jeong YJ, Yun DJ, Jang J, Park S, An TK, Kim LH, Kim SH, Park CE.

Phys Chem Chem Phys. 2015 Mar 7;17(9):6635-43. doi: 10.1039/c4cp05787b.

PMID:
25665649
5.

Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.

Park J, Lee WH, Huh S, Sim SH, Kim SB, Cho K, Hong BH, Kim KS.

J Phys Chem Lett. 2011 Apr 21;2(8):841-5. doi: 10.1021/jz200265w.

PMID:
26295616
6.

Chemically tunable ultrathin silsesquiazane interlayer for n-type and p-type organic transistors on flexible plastic.

Lee WH, Lee SG, Kwark YJ, Lee DR, Lee S, Cho JH.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22807-14. doi: 10.1021/am507003n.

PMID:
25459690
7.

Wafer-scale patterning of reduced graphene oxide electrodes by transfer-and-reverse stamping for high performance OFETs.

Lee JS, Kim NH, Kang MS, Yu H, Lee DR, Oh JH, Chang ST, Cho JH.

Small. 2013 Aug 26;9(16):2817-25. doi: 10.1002/smll.201300538.

PMID:
23589341
8.

Controllable chemical vapor deposition growth of few layer graphene for electronic devices.

Wei D, Wu B, Guo Y, Yu G, Liu Y.

Acc Chem Res. 2013 Jan 15;46(1):106-15. doi: 10.1021/ar300103f.

PMID:
22809220
9.

Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.

Liu W, Jackson BL, Zhu J, Miao CQ, Chung CH, Park YJ, Sun K, Woo J, Xie YH.

ACS Nano. 2010 Jul 27;4(7):3927-32. doi: 10.1021/nn100728p. Erratum in: ACS Nano. 2011 Mar 22;5(3):2412. Chung, Choon-Heui [corrected to Chung, Choong-Heui].

PMID:
20536162
10.

Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters.

Briseno AL, Mannsfeld SC, Reese C, Hancock JM, Xiong Y, Jenekhe SA, Bao Z, Xia Y.

Nano Lett. 2007 Sep;7(9):2847-53.

PMID:
17696562
11.

Micropatterned single-walled carbon nanotube electrodes for use in high-performance transistors and inverters.

Kang W, Kim NH, Lee DY, Chang ST, Cho JH.

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9664-70. doi: 10.1021/am5020315.

PMID:
24915751
12.

Laterally-stacked, solution-processed organic microcrystal with ambipolar charge transport behavior.

Shim H, Kumar A, Cho H, Yang D, Palai AK, Pyo S.

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17804-14. doi: 10.1021/am5044505.

PMID:
25244525
13.

Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

Baeg KJ, Kim J, Khim D, Caironi M, Kim DY, You IK, Quinn JR, Facchetti A, Noh YY.

ACS Appl Mater Interfaces. 2011 Aug;3(8):3205-14. doi: 10.1021/am200705j.

PMID:
21805991
14.

Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors.

Jang J, Park J, Nam S, Anthony JE, Kim Y, Kim KS, Kim KS, Hong BH, Park CE.

Nanoscale. 2013 Nov 21;5(22):11094-101. doi: 10.1039/c3nr03356b.

PMID:
24071996
15.

Cascading wafer-scale integrated graphene complementary inverters under ambient conditions.

Rizzi LG, Bianchi M, Behnam A, Carrion E, Guerriero E, Polloni L, Pop E, Sordan R.

Nano Lett. 2012 Aug 8;12(8):3948-53. doi: 10.1021/nl301079r.

PMID:
22793169
16.

Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene.

Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S.

J Am Chem Soc. 2004 Jul 7;126(26):8138-40.

PMID:
15225054
17.

High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes.

Choi JY, Kang W, Kang B, Cha W, Son SK, Yoon Y, Kim H, Kang Y, Ko MJ, Son HJ, Cho K, Cho JH, Kim B.

ACS Appl Mater Interfaces. 2015 Mar 18;7(10):6002-12. doi: 10.1021/acsami.5b00747.

PMID:
25734886
18.

Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits.

Baeg KJ, Khim D, Kim J, Han H, Jung SW, Kim TW, Kang M, Facchetti A, Hong SK, Kim DY, Noh YY.

ACS Appl Mater Interfaces. 2012 Nov;4(11):6176-84. doi: 10.1021/am301793m.

PMID:
23046095
19.

The importance of p-n junction interfaces for efficient small molecule-based organic solar cells.

Chou WY, Chang J, Yen CT, Lin YS, Tang FC, Liu SJ, Cheng HL, Hsu SL, Chen JS.

Phys Chem Chem Phys. 2012 Apr 21;14(15):5284-8. doi: 10.1039/c2cp24047e.

PMID:
22402615
20.

Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability.

Guo X, Ortiz RP, Zheng Y, Hu Y, Noh YY, Baeg KJ, Facchetti A, Marks TJ.

J Am Chem Soc. 2011 Feb 9;133(5):1405-18. doi: 10.1021/ja107678m.

PMID:
21207965
Items per page

Supplemental Content

Support Center