Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction.

Zhang H, Wang Y, Wang D, Li Y, Liu X, Liu P, Yang H, An T, Tang Z, Zhao H.

Small. 2014 Aug 27;10(16):3371-8. doi: 10.1002/smll.201400781. Epub 2014 Apr 14.

PMID:
24729520
2.

Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.

Xu J, Dong G, Jin C, Huang M, Guan L.

ChemSusChem. 2013 Mar;6(3):493-9. doi: 10.1002/cssc.201200564. Epub 2013 Feb 12.

PMID:
23404829
3.

Electrocatalytic oxygen activation by carbanion intermediates of nitrogen-doped graphitic carbon.

Li Q, Noffke BW, Wang Y, Menezes B, Peters DG, Raghavachari K, Li LS.

J Am Chem Soc. 2014 Mar 5;136(9):3358-61. doi: 10.1021/ja413179n. Epub 2014 Feb 24.

PMID:
24533901
4.

Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction.

Lin Z, Song MK, Ding Y, Liu Y, Liu M, Wong CP.

Phys Chem Chem Phys. 2012 Mar 14;14(10):3381-7. doi: 10.1039/c2cp00032f. Epub 2012 Feb 3.

PMID:
22307527
5.

Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.

Qu L, Liu Y, Baek JB, Dai L.

ACS Nano. 2010 Mar 23;4(3):1321-6. doi: 10.1021/nn901850u.

PMID:
20155972
6.

Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction.

Li J, Zhang Y, Zhang X, Han J, Wang Y, Gu L, Zhang Z, Wang X, Jian J, Xu P, Song B.

ACS Appl Mater Interfaces. 2015 Sep 9;7(35):19626-34. doi: 10.1021/acsami.5b03845. Epub 2015 Aug 25.

PMID:
26305578
7.
8.

O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.

Li Y, Zhong G, Yu H, Wang H, Peng F.

Phys Chem Chem Phys. 2015 Sep 14;17(34):21950-9. doi: 10.1039/c5cp02167g. Epub 2015 Aug 3.

PMID:
26234475
9.

On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons.

Kim H, Lee K, Woo SI, Jung Y.

Phys Chem Chem Phys. 2011 Oct 21;13(39):17505-10. doi: 10.1039/c1cp21665a. Epub 2011 Sep 22.

PMID:
21946759
10.

Excavated Fe-N-C sites for enhanced electrocatalytic activity in the oxygen reduction reaction.

Jeong B, Shin D, Jeon H, Ocon JD, Mun BS, Baik J, Shin HJ, Lee J.

ChemSusChem. 2014 May;7(5):1289-94. doi: 10.1002/cssc.201301374. Epub 2014 Apr 3.

PMID:
24700786
11.

Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction.

Xu P, Wu D, Wan L, Hu P, Liu R.

J Colloid Interface Sci. 2014 May 1;421:160-4. doi: 10.1016/j.jcis.2014.02.001. Epub 2014 Feb 8.

PMID:
24594045
12.

Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

Wen Q, Wang S, Yan J, Cong L, Chen Y, Xi H.

Bioelectrochemistry. 2014 Feb;95:23-8. doi: 10.1016/j.bioelechem.2013.10.007. Epub 2013 Oct 25.

PMID:
24239870
13.

Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.

Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P.

ACS Nano. 2012 Nov 27;6(11):9764-76. doi: 10.1021/nn303275d. Epub 2012 Oct 10.

PMID:
23036092
14.

Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction.

Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S.

Nanoscale. 2015 Apr 14;7(14):6136-42. doi: 10.1039/c5nr00013k.

PMID:
25772220
15.

Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction.

Wu J, Ma L, Yadav RM, Yang Y, Zhang X, Vajtai R, Lou J, Ajayan PM.

ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14763-9. doi: 10.1021/acsami.5b02902. Epub 2015 Jul 1.

PMID:
26091162
16.

Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells.

Zhang B, Wen Z, Ci S, Mao S, Chen J, He Z.

ACS Appl Mater Interfaces. 2014 May 28;6(10):7464-70. doi: 10.1021/am5008547. Epub 2014 Apr 16.

PMID:
24720600
17.

One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions.

Chen L, Cui X, Wang Y, Wang M, Cui F, Wei C, Huang W, Hua Z, Zhang L, Shi J.

Chem Asian J. 2014 Oct;9(10):2915-20. doi: 10.1002/asia.201402334. Epub 2014 Aug 5.

PMID:
25100339
18.

Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction.

Chen J, Wang X, Cui X, Yang G, Zheng W.

Chem Commun (Camb). 2014 Jan 18;50(5):557-9. doi: 10.1039/c3cc47519k. Epub 2013 Nov 22.

PMID:
24270453
19.

Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER.

Li JS, Li SL, Tang YJ, Han M, Dai ZH, Bao JC, Lan YQ.

Chem Commun (Camb). 2015 Feb 14;51(13):2710-3. doi: 10.1039/c4cc09062d.

PMID:
25575029
20.

Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance.

Liu Q, Duan Y, Zhao Q, Pan F, Zhang B, Zhang J.

Langmuir. 2014 Jul 15;30(27):8238-45. doi: 10.1021/la404995y. Epub 2014 Jul 1.

PMID:
24945900

Supplemental Content

Support Center