Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance.

Li JY, Liu J, Dong D, Jia X, McCouch SR, Kochian LV.

Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6503-8. doi: 10.1073/pnas.1318975111. Epub 2014 Apr 11.

2.

Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice.

Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF.

Plant Physiol. 2012 Aug;159(4):1624-33. doi: 10.1104/pp.112.199778. Epub 2012 Jun 25.

3.

Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping.

Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR.

PLoS Genet. 2011 Aug;7(8):e1002221. doi: 10.1371/journal.pgen.1002221. Epub 2011 Aug 4.

4.

Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars.

Roselló M, Poschenrieder C, Gunsé B, Barceló J, Llugany M.

J Inorg Biochem. 2015 Nov;152:160-6. doi: 10.1016/j.jinorgbio.2015.08.021. Epub 2015 Aug 28.

PMID:
26337117
5.

Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice.

Xia J, Yamaji N, Che J, Shen RF, Ma JF.

J Exp Bot. 2014 Aug;65(15):4297-304. doi: 10.1093/jxb/eru201. Epub 2014 May 12.

6.

Plasma membrane-localized transporter for aluminum in rice.

Xia J, Yamaji N, Kasai T, Ma JF.

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18381-5. doi: 10.1073/pnas.1004949107. Epub 2010 Oct 11.

7.

Further characterization of an aluminum influx transporter in rice.

Xia J, Yamaji N, Ma JF.

Plant Signal Behav. 2011 Jan;6(1):160-3. Epub 2011 Jan 1.

8.

A plasma membrane-localized small peptide is involved in rice aluminum tolerance.

Xia J, Yamaji N, Ma JF.

Plant J. 2013 Oct;76(2):345-55. doi: 10.1111/tpj.12296. Epub 2013 Sep 6.

9.

Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.

Dey A, Samanta MK, Gayen S, Sen SK, Maiti MK.

PLoS One. 2016 Mar 9;11(3):e0150763. doi: 10.1371/journal.pone.0150763. eCollection 2016.

10.

Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A, Panda SK.

PLoS One. 2017 Apr 27;12(4):e0176357. doi: 10.1371/journal.pone.0176357. eCollection 2017.

11.

Functional Analysis of a MATE Gene OsFRDL2 Revealed its Involvement in Al-Induced Secretion of Citrate, but a Lower Contribution to Al Tolerance in Rice.

Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF.

Plant Cell Physiol. 2016 May;57(5):976-85. doi: 10.1093/pcp/pcw026. Epub 2016 Feb 12.

PMID:
26872836
12.

Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice.

Tsutsui T, Yamaji N, Feng Ma J.

Plant Physiol. 2011 Jun;156(2):925-31. doi: 10.1104/pp.111.175802. Epub 2011 Apr 18.

13.

Retrotransposon-Mediated Aluminum Tolerance through Enhanced Expression of the Citrate Transporter OsFRDL4.

Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF.

Plant Physiol. 2016 Dec;172(4):2327-2336. Epub 2016 Oct 15.

14.

Comparative genome-wide transcriptional analysis of Al-responsive genes reveals novel Al tolerance mechanisms in rice.

Tsutsui T, Yamaji N, Huang CF, Motoyama R, Nagamura Y, Ma JF.

PLoS One. 2012;7(10):e48197. doi: 10.1371/journal.pone.0048197. Epub 2012 Oct 26.

15.

Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity.

Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP.

Planta. 2014 Jan;239(1):187-98. doi: 10.1007/s00425-013-1969-y. Epub 2013 Oct 20.

PMID:
24142111
16.

New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes.

Arenhart RA, Bai Y, de Oliveira LF, Neto LB, Schunemann M, Maraschin Fdos S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M.

Mol Plant. 2014 Apr;7(4):709-21. doi: 10.1093/mp/sst160. Epub 2013 Nov 19.

17.

Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H.

Plant Physiol. 2013 Mar;161(3):1347-61. doi: 10.1104/pp.112.208934. Epub 2013 Jan 22.

18.

Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.

Maron LG, Piñeros MA, Guimarães CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SN, Kochian LV.

Plant J. 2010 Mar;61(5):728-40. doi: 10.1111/j.1365-313X.2009.04103.x. Epub 2009 Dec 10.

19.

OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice.

Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ.

BMC Plant Biol. 2015 May 20;15:123. doi: 10.1186/s12870-015-0500-y.

20.

Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots.

Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV.

New Phytol. 2008;179(1):116-28. doi: 10.1111/j.1469-8137.2008.02440.x. Epub 2008 Apr 9.

Supplemental Content

Support Center