Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Establishment of quantitative severity evaluation model for spinal cord injury by metabolomic fingerprinting.

Peng J, Zeng J, Cai B, Yang H, Cohen MJ, Chen W, Sun MW, Lu CD, Jiang H.

PLoS One. 2014 Apr 11;9(4):e93736. doi: 10.1371/journal.pone.0093736. eCollection 2014.

2.

Use of 1H-nuclear magnetic resonance to screen a set of biomarkers for monitoring metabolic disturbances in severe burn patients.

Zhang Y, Cai B, Jiang H, Yan H, Yang H, Peng J, Wang W, Ma S, Wu X, Peng X.

Crit Care. 2014 Jul 24;18(4):R159. doi: 10.1186/cc13999.

3.

Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

Jiang H, Peng J, Zhou ZY, Duan Y, Chen W, Cai B, Yang H, Zhang W.

Chin Med J (Engl). 2010 Sep;123(17):2315-9.

PMID:
21034541
4.

Feasibility of in vivo quantitative magnetic resonance imaging with diffusion weighted imaging, T2-weighted relaxometry, and diffusion tensor imaging in a clinical 3 tesla magnetic resonance scanner for the acute traumatic spinal cord injury of rats: technical note.

Mondragon-Lozano R, Diaz-Ruiz A, Ríos C, Olayo Gonzalez R, Favila R, Salgado-Ceballos H, Roldan-Valadez E.

Spine (Phila Pa 1976). 2013 Sep 15;38(20):E1242-9. doi: 10.1097/BRS.0b013e31829ef69c.

PMID:
23759823
5.

Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats.

Fujieda Y, Ueno S, Ogino R, Kuroda M, Jönsson TJ, Guo L, Bamba T, Fukusaki E.

PLoS One. 2012;7(8):e43152. doi: 10.1371/journal.pone.0043152. Epub 2012 Aug 13.

6.

The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics.

Liu YT, Jia HM, Chang X, Ding G, Zhang HW, Zou ZM.

Mol Biosyst. 2013 Nov;9(11):2823-34. doi: 10.1039/c3mb70222g.

PMID:
24057015
7.

Protective effects of erythropoietin in traumatic spinal cord injury by inducing the Nrf2 signaling pathway activation.

Jin W, Ming X, Hou X, Zhu T, Yuan B, Wang J, Ni H, Jiang J, Wang H, Liang W.

J Trauma Acute Care Surg. 2014 May;76(5):1228-34. doi: 10.1097/TA.0000000000000211.

PMID:
24747453
8.

Delayed inflammatory mRNA and protein expression after spinal cord injury.

Byrnes KR, Washington PM, Knoblach SM, Hoffman E, Faden AI.

J Neuroinflammation. 2011 Oct 5;8:130. doi: 10.1186/1742-2094-8-130.

9.

Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry.

Zhang F, Wang D, Li X, Li Z, Chao J, Qin X.

J Pharm Biomed Anal. 2013 Jul-Aug;81-82:168-77. doi: 10.1016/j.jpba.2013.04.005. Epub 2013 Apr 12.

PMID:
23670098
10.

Effect of VEGF and CX43 on the promotion of neurological recovery by hyperbaric oxygen treatment in spinal cord-injured rats.

Liu X, Zhou Y, Wang Z, Yang J, Gao C, Su Q.

Spine J. 2014 Jan;14(1):119-27. doi: 10.1016/j.spinee.2013.06.084. Epub 2013 Oct 31.

PMID:
24183749
11.

Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats.

Lesage F, Brieu N, Dubeau S, Beaumont E.

Neurosci Lett. 2009 Apr 17;454(1):105-9. doi: 10.1016/j.neulet.2009.02.060. Epub 2009 Mar 3.

PMID:
19429064
12.

Neurorestorative targets of dietary long-chain omega-3 fatty acids in neurological injury.

Figueroa JD, De Leon M.

Mol Neurobiol. 2014 Aug;50(1):197-213. doi: 10.1007/s12035-014-8701-1. Epub 2014 Apr 17.

13.

Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats.

Zhang S, Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D.

Anal Biochem. 2008 Dec 1;383(1):76-84. doi: 10.1016/j.ab.2008.07.041. Epub 2008 Aug 20. Erratum in: Anal Biochem. 2009 Feb 15;385(2):392.

14.

Establishment of a spinal cord injury model in adult rats by an electrocircuit-controlled impacting device and its pathological observations.

Wang Y, Liu CF, Wang QP, Gao H, Na HR, Yu RT.

Cell Biochem Biophys. 2014 Jun;69(2):333-40. doi: 10.1007/s12013-013-9804-4.

PMID:
24338564
15.

Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews.

Sun H, Zhang A, Yan G, Piao C, Li W, Sun C, Wu X, Li X, Chen Y, Wang X.

Mol Cell Proteomics. 2013 Mar;12(3):710-9. doi: 10.1074/mcp.M112.019141. Epub 2012 Dec 20.

16.

Manganese-enhanced magnetic resonance imaging in experimental spinal cord injury: correlation between T1-weighted changes and Mn(2+) concentrations.

Martirosyan NL, Bennett KM, Theodore N, Preul MC.

Neurosurgery. 2010 Jan;66(1):131-6. doi: 10.1227/01.NEU.0000361997.08116.96.

PMID:
20023543
17.
18.

1H-MRS in spinal cord injury: acute and chronic metabolite alterations in rat brain and lumbar spinal cord.

Erschbamer M, Oberg J, Westman E, Sitnikov R, Olson L, Spenger C.

Eur J Neurosci. 2011 Feb;33(4):678-88. doi: 10.1111/j.1460-9568.2010.07562.x. Epub 2011 Jan 20.

19.

[Effect of aminoguanidine on spinal cord edema of acute spinal cord injury in rats].

Fan Z, Cao Y, Zhang Z, Wang Y, Yu D, Zhang M, Mei X, Lü G.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012 Aug;26(8):984-8. Chinese.

PMID:
23012936
20.

Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat.

Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E, Yilmaz C, Caner H, Altinors N.

Spine (Phila Pa 1976). 2013 Jul 1;38(15):1253-9. doi: 10.1097/BRS.0b013e3182895587.

PMID:
23370685

Supplemental Content

Support Center