Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.

Rašić G, Filipović I, Weeks AR, Hoffmann AA.

BMC Genomics. 2014 Apr 11;15:275. doi: 10.1186/1471-2164-15-275.

2.

Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia.

Rašić G, Endersby-Harshman N, Tantowijoyo W, Goundar A, White V, Yang Q, Filipović I, Johnson P, Hoffmann AA, Arguni E.

Parasit Vectors. 2015 Dec 1;8:610. doi: 10.1186/s13071-015-1230-6.

3.

A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, Powell JR.

G3 (Bethesda). 2015 Feb 26;5(5):711-8. doi: 10.1534/g3.114.016196.

4.

Probing functional polymorphisms in the dengue vector, Aedes aegypti.

Bonizzoni M, Britton M, Marinotti O, Dunn WA, Fass J, James AA.

BMC Genomics. 2013 Oct 29;14:739. doi: 10.1186/1471-2164-14-739.

5.

Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific.

Calvez E, Guillaumot L, Millet L, Marie J, Bossin H, Rama V, Faamoe A, Kilama S, Teurlai M, Mathieu-Daudé F, Dupont-Rouzeyrol M.

PLoS Negl Trop Dis. 2016 Jan 22;10(1):e0004374. doi: 10.1371/journal.pntd.0004374. eCollection 2016 Jan 22.

6.

Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia.

Paupy C, Le Goff G, Brengues C, Guerra M, Revollo J, Barja Simon Z, Hervé JP, Fontenille D.

Infect Genet Evol. 2012 Aug;12(6):1260-9. doi: 10.1016/j.meegid.2012.04.012. Epub 2012 Apr 19.

PMID:
22522103
7.

Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti.

Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW.

BMC Genomics. 2009 Dec 9;10:590. doi: 10.1186/1471-2164-10-590.

8.
9.

Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission.

Juneja P, Osei-Poku J, Ho YS, Ariani CV, Palmer WJ, Pain A, Jiggins FM.

PLoS Negl Trop Dis. 2014 Jan 30;8(1):e2652. doi: 10.1371/journal.pntd.0002652. eCollection 2014 Jan 30.

10.

The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R, Sandler J, Hay BA.

G3 (Bethesda). 2013 Sep 4;3(9):1493-509. doi: 10.1534/g3.113.006742.

11.

Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs.

Timoshevskiy VA, Kinney NA, deBruyn BS, Mao C, Tu Z, Severson DW, Sharakhov IV, Sharakhova MV.

BMC Biol. 2014 Apr 14;12:27. doi: 10.1186/1741-7007-12-27.

12.

Microevolution of Aedes aegypti.

Louise C, Vidal PO, Suesdek L.

PLoS One. 2015 Sep 11;10(9):e0137851. doi: 10.1371/journal.pone.0137851. eCollection 2015 Sep 11.

13.

Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.

Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A.

PLoS Negl Trop Dis. 2015 Apr 20;9(4):e0003553. doi: 10.1371/journal.pntd.0003553. eCollection 2015 Apr 20.

14.

Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers.

Huber K, Le Loan L, Hoang TH, Ravel S, Rodhain F, Failloux AB.

Mol Ecol. 2002 Sep;11(9):1629-35.

PMID:
12207714
15.

Developing Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in three Aedes disease vectors.

White VL, Endersby NM, Chan J, Hoffmann AA, Weeks AR.

Insect Sci. 2015 Mar;22(3):409-23. doi: 10.1111/1744-7917.12145. Epub 2014 Aug 7.

PMID:
24895297
16.

Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito.

Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR.

Evolution. 2014 Feb;68(2):514-25. doi: 10.1111/evo.12281. Epub 2013 Oct 23.

17.

Genetic structure of Aedes aegypti in Australia and Vietnam revealed by microsatellite and exon primed intron crossing markers suggests feasibility of local control options.

Endersby NM, Hoffmann AA, White VL, Lowenstein S, Ritchie S, Johnson PH, Rapley LP, Ryan PA, Nam VS, Yen NT, Kittiyapong P, Weeks AR.

J Med Entomol. 2009 Sep;46(5):1074-83.

18.

Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal.

Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WC 4th.

PLoS Negl Trop Dis. 2009;3(4):e408. doi: 10.1371/journal.pntd.0000408. Epub 2009 Apr 14.

19.

Imaginal discs--a new source of chromosomes for genome mapping of the yellow fever mosquito Aedes aegypti.

Sharakhova MV, Timoshevskiy VA, Yang F, Demin SIu, Severson DW, Sharakhov IV.

PLoS Negl Trop Dis. 2011 Oct;5(10):e1335. doi: 10.1371/journal.pntd.0001335. Epub 2011 Oct 4.

20.

An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti.

Timoshevskiy VA, Severson DW, Debruyn BS, Black WC, Sharakhov IV, Sharakhova MV.

PLoS Negl Trop Dis. 2013;7(2):e2052. doi: 10.1371/journal.pntd.0002052. Epub 2013 Feb 14.

Supplemental Content

Support Center