Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Piezoelectric monolayers as nonlinear energy harvesters.

López-Suárez M, Pruneda M, Abadal G, Rurali R.

Nanotechnology. 2014 May 2;25(17):175401. doi: 10.1088/0957-4484/25/17/175401.

PMID:
24722065
2.

Influence of combined fundamental potentials in a nonlinear vibration energy harvester.

Podder P, Mallick D, Amann A, Roy S.

Sci Rep. 2016 Nov 22;6:37292. doi: 10.1038/srep37292.

3.
4.

Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations.

Blystad LC, Halvorsen E, Husa S.

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Apr;57(4):908-19. doi: 10.1109/TUFFC.2010.1495.

PMID:
20378453
5.

Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.

Xue H, Hu Y, Wang QM.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):2104-8. doi: 10.1109/TUFFC.903.

PMID:
18986908
6.

Low-frequency meandering piezoelectric vibration energy harvester.

Berdy DF, Srisungsitthisunti P, Jung B, Xu X, Rhoads JF, Peroulis D.

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 May;59(5):846-58. doi: 10.1109/TUFFC.2012.2269.

PMID:
22622969
7.

Fundamental issues in nonlinear wideband-vibration energy harvesting.

Halvorsen E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042129. Erratum in: Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):039902.

PMID:
23679394
8.

A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

Li X, Guo M, Dong S.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):698-703. doi: 10.1109/TUFFC.2011.1862.

PMID:
21507747
9.

Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

Ostasevicius V, Janusas G, Milasauskaite I, Zilys M, Kizauskiene L.

Sensors (Basel). 2015 May 28;15(6):12594-612. doi: 10.3390/s150612594.

10.

Harvesting vibrational energy using material work functions.

Varpula A, Laakso SJ, Havia T, Kyynäräinen J, Prunnila M.

Sci Rep. 2014 Oct 28;4:6799. doi: 10.1038/srep06799.

11.

Development of enhanced piezoelectric energy harvester induced by human motion.

Minami Y, Nakamachi E.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1627-30. doi: 10.1109/EMBC.2012.6346257.

PMID:
23366218
12.

Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

Zizys D, Gaidys R, Dauksevicius R, Ostasevicius V, Daniulaitis V.

Sensors (Basel). 2015 Dec 23;16(1). pii: E11. doi: 10.3390/s16010011.

13.

Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

Zhang H, Afzalul K.

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jun;61(6):1016-23. doi: 10.1109/TUFFC.2014.2997.

PMID:
24859665
14.

Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.

Zhang Y, Zheng R, Shimono K, Kaizuka T, Nakano K.

Sensors (Basel). 2016 Oct 17;16(10). pii: E1727.

15.

Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.

Karami MA, Bilgen O, Inman DJ, Friswell MI.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1508-20. doi: 10.1109/TUFFC.2011.1969.

PMID:
21768034
16.

High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.

Li X, Song J, Feng S, Xie X, Li Z, Wang L, Pu Y, Soh AK, Shen J, Lu W, Liu S.

Nanotechnology. 2016 Dec 2;27(48):485402.

PMID:
27819801
17.

A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

Lee S, Youn BD.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Mar;58(3):629-45. doi: 10.1109/TUFFC.2011.5733266.

PMID:
21429855
18.

Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance.

Xue H, Hu H.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):2092-6. doi: 10.1109/TUFFC.901.

PMID:
18986906
19.

Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

Nabavi S, Zhang L.

Sensors (Basel). 2016 Jul 16;16(7). pii: E1101. doi: 10.3390/s16071101. Review.

20.

Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.

Lallart M, Guyomar D, Richard C, Petit L.

J Acoust Soc Am. 2010 Nov;128(5):2739-48. doi: 10.1121/1.3290979.

PMID:
21110569
Items per page

Supplemental Content

Support Center