Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis.

Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C.

PLoS One. 2014 Apr 10;9(4):e94177. doi: 10.1371/journal.pone.0094177.

2.

Structure-based rational design of a phosphotriesterase.

Jackson CJ, Weir K, Herlt A, Khurana J, Sutherland TD, Horne I, Easton C, Russell RJ, Scott C, Oakeshott JG.

Appl Environ Microbiol. 2009 Aug;75(15):5153-6. doi: 10.1128/AEM.00629-09.

3.

Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp.

Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH.

Biotechnol Bioeng. 2014 Oct;111(10):1920-30. doi: 10.1002/bit.25272.

PMID:
24771278
4.

Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.

Tsai PC, Fox N, Bigley AN, Harvey SP, Barondeau DP, Raushel FM.

Biochemistry. 2012 Aug 14;51(32):6463-75.

5.

Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.

Nowlan C, Li Y, Hermann JC, Evans T, Carpenter J, Ghanem E, Shoichet BK, Raushel FM.

J Am Chem Soc. 2006 Dec 13;128(49):15892-902.

PMID:
17147402
6.

Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.

Hawwa R, Larsen SD, Ratia K, Mesecar AD.

J Mol Biol. 2009 Oct 16;393(1):36-57. doi: 10.1016/j.jmb.2009.06.083.

PMID:
19631223
7.

Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site.

Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM.

J Am Chem Soc. 2003 Jul 30;125(30):8990-1.

PMID:
15369336
8.

Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily.

Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM.

Biochemistry. 2009 Mar 17;48(10):2237-47. doi: 10.1021/bi802274f.

9.

Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase.

Baker PJ, Montclare JK.

Chembiochem. 2011 Aug 16;12(12):1845-8. doi: 10.1002/cbic.201100221. No abstract available.

PMID:
21710682
10.

Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution.

McLoughlin SY, Jackson C, Liu JW, Ollis D.

Protein Expr Purif. 2005 Jun;41(2):433-40.

PMID:
15866732
11.

Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site.

Jackson CJ, Carr PD, Kim HK, Liu JW, Herrald P, Mitić N, Schenk G, Smith CA, Ollis DL.

Biochem J. 2006 Aug 1;397(3):501-8.

12.

Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis.

Zhang L, Chen R, Dong Z, Li X.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jan 1;69(Pt 1):57-60. doi: 10.1107/S1744309112049032.

13.

Structural basis for natural lactonase and promiscuous phosphotriesterase activities.

Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E.

J Mol Biol. 2008 Jun 20;379(5):1017-28. doi: 10.1016/j.jmb.2008.04.022.

PMID:
18486146
14.
15.

Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.

Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Höcker B, Sterner R, Raushel FM.

J Am Chem Soc. 2013 Aug 7;135(31):11670-7. doi: 10.1021/ja405911h.

16.

The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis.

Ely F, Hadler KS, Gahan LR, Guddat LW, Ollis DL, Schenk G.

Biochem J. 2010 Dec 15;432(3):565-73. doi: 10.1042/BJ20101054.

PMID:
20868365
17.

Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase.

Elias M, Dupuy J, Merone L, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jul 1;63(Pt 7):553-5.

18.

In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase.

Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL.

J Mol Biol. 2008 Feb 1;375(5):1189-96.

PMID:
18082180
19.

The effects of substrate orientation on the mechanism of a phosphotriesterase.

Jackson CJ, Liu JW, Coote ML, Ollis DL.

Org Biomol Chem. 2005 Dec 21;3(24):4343-50.

PMID:
16327895
20.

Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel.

Chaloupková R, Sýkorová J, Prokop Z, Jesenská A, Monincová M, Pavlová M, Tsuda M, Nagata Y, Damborský J.

J Biol Chem. 2003 Dec 26;278(52):52622-8.

Items per page

Supplemental Content

Support Center