Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.

Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, Gillette MA, Clauser KR, Qiao JW, Gritsenko MA, Moore RJ, Levine DA, Townsend R, Erdmann-Gilmore P, Snider JE, Davies SR, Ruggles KV, Fenyo D, Kitchens RT, Li S, Olvera N, Dao F, Rodriguez H, Chan DW, Liebler D, White F, Rodland KD, Mills GB, Smith RD, Paulovich AG, Ellis M, Carr SA.

Mol Cell Proteomics. 2014 Jul;13(7):1690-704. doi: 10.1074/mcp.M113.036392. Epub 2014 Apr 9.

2.

Delayed times to tissue fixation result in unpredictable global phosphoproteome changes.

Gündisch S, Grundner-Culemann K, Wolff C, Schott C, Reischauer B, Machatti M, Groelz D, Schaab C, Tebbe A, Becker KF.

J Proteome Res. 2013 Oct 4;12(10):4424-34. doi: 10.1021/pr400451z. Epub 2013 Sep 17.

PMID:
23984901
3.

Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors.

Schweppe DK, Rigas JR, Gerber SA.

J Proteomics. 2013 Oct 8;91:286-96. doi: 10.1016/j.jprot.2013.07.023. Epub 2013 Aug 2.

4.

Effects of cold ischemia and inflammatory tumor microenvironment on detection of PI3K/AKT and MAPK pathway activation patterns in clinical cancer samples.

Bonnas C, Specht K, Spleiss O, Froehner S, Dietmann G, Krüger JM, Arbogast S, Feuerhake F.

Int J Cancer. 2012 Oct 1;131(7):1621-32. doi: 10.1002/ijc.27422. Epub 2012 Feb 28.

5.

Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells.

Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M, Seo HC, Nagiec M, Luna RE, Reinherz EL, Blenis J, Gygi SP, Wagner G.

Proc Natl Acad Sci U S A. 2014 May 27;111(21):E2182-90. doi: 10.1073/pnas.1404943111. Epub 2014 Apr 29. Erratum in: Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11223.

6.

Preanalytical variables and phosphoepitope expression in FFPE tissue: quantitative epitope assessment after variable cold ischemic time.

Vassilakopoulou M, Parisi F, Siddiqui S, England AM, Zarella ER, Anagnostou V, Kluger Y, Hicks DG, Rimm DL, Neumeister VM.

Lab Invest. 2015 Mar;95(3):334-41. doi: 10.1038/labinvest.2014.139. Epub 2014 Nov 24.

7.

Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways.

Ali NA, Wu J, Hochgräfe F, Chan H, Nair R, Ye S, Zhang L, Lyons RJ, Pinese M, Lee HC, Armstrong N, Ormandy CJ, Clark SJ, Swarbrick A, Daly RJ.

Breast Cancer Res. 2014 Sep 9;16(5):437. doi: 10.1186/s13058-014-0437-3.

8.

Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes.

Xu Z, Wu C, Xie F, Slysz GW, Tolic N, Monroe ME, Petyuk VA, Payne SH, Fujimoto GM, Moore RJ, Fillmore TL, Schepmoes AA, Levine DA, Townsend RR, Davies SR, Li S, Ellis M, Boja E, Rivers R, Rodriguez H, Rodland KD, Liu T, Smith RD.

J Proteome Res. 2015 Jan 2;14(1):422-33. doi: 10.1021/pr500840w. Epub 2014 Nov 10.

9.

Phosphoproteomic profiling of tumor tissues identifies HSP27 Ser82 phosphorylation as a robust marker of early ischemia.

Zahari MS, Wu X, Pinto SM, Nirujogi RS, Kim MS, Fetics B, Philip M, Barnes SR, Godfrey B, Gabrielson E, Nevo E, Pandey A.

Sci Rep. 2015 Sep 2;5:13660. doi: 10.1038/srep13660.

10.

Critical roles of specimen type and temperature before and during fixation in the detection of phosphoproteins in breast cancer tissues.

Gündisch S, Annaratone L, Beese C, Drecol E, Marchiò C, Quaglino E, Sapino A, Becker KF, Bussolati G.

Lab Invest. 2015 May;95(5):561-71. doi: 10.1038/labinvest.2015.37. Epub 2015 Mar 2.

11.

Global quantitative phosphoproteome analysis of human tumor xenografts treated with a CD44 antagonist.

Weigand S, Herting F, Maisel D, Nopora A, Voss E, Schaab C, Klammer M, Tebbe A.

Cancer Res. 2012 Sep 1;72(17):4329-39. doi: 10.1158/0008-5472.CAN-12-0136. Epub 2012 Jul 9.

12.

Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer.

Oyama M, Nagashima T, Suzuki T, Kozuka-Hata H, Yumoto N, Shiraishi Y, Ikeda K, Kuroki Y, Gotoh N, Ishida T, Inoue S, Kitano H, Okada-Hatakeyama M.

J Biol Chem. 2011 Jan 7;286(1):818-29. doi: 10.1074/jbc.M110.156877. Epub 2010 Nov 2.

13.

Quantitative proteomic analysis of HER2 normal and overexpressing MCF-7 breast cancer cells revealed proteomic changes accompanied with HER2 gene amplification.

Tang Y, Mackey J, Lai R, Ghosh S, Santos C, Graham K, Damaraju S, Pasdar M, Li L.

J Proteomics. 2013 Oct 8;91:200-9. doi: 10.1016/j.jprot.2013.06.034. Epub 2013 Jul 11.

PMID:
23851309
14.

Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M.

Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475.

15.

Phosphoprotein secretome of tumor cells as a source of candidates for breast cancer biomarkers in plasma.

Zawadzka AM, Schilling B, Cusack MP, Sahu AK, Drake P, Fisher SJ, Benz CC, Gibson BW.

Mol Cell Proteomics. 2014 Apr;13(4):1034-49. doi: 10.1074/mcp.M113.035485. Epub 2014 Feb 6.

16.

Proteomics profiling of ethylene-induced tomato flower pedicel abscission.

Zhang XL, Qi MF, Xu T, Lu XJ, Li TL.

J Proteomics. 2015 May 21;121:67-87. doi: 10.1016/j.jprot.2015.03.023. Epub 2015 Mar 28.

PMID:
25829262
17.

Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.

Wijeratne AB, Manning JR, Schultz Jel J, Greis KD.

J Proteome Res. 2013 Oct 4;12(10):4268-79. doi: 10.1021/pr400835k. Epub 2013 Sep 24.

18.

Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors.

Amemiya Y, Yang W, Benatar T, Nofech-Mozes S, Yee A, Kahn H, Holloway C, Seth A.

Breast Cancer Res Treat. 2011 Apr;126(2):373-84. doi: 10.1007/s10549-010-0921-0. Epub 2010 May 13.

PMID:
20464481
19.

Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.

Ray BN, Kweon HK, Argetsinger LS, Fingar DC, Andrews PC, Carter-Su C.

Mol Endocrinol. 2012 Jun;26(6):1056-73. doi: 10.1210/me.2011-1258. Epub 2012 May 8.

20.

Analysis of the Candida albicans Phosphoproteome.

Willger SD, Liu Z, Olarte RA, Adamo ME, Stajich JE, Myers LC, Kettenbach AN, Hogan DA.

Eukaryot Cell. 2015 May;14(5):474-85. doi: 10.1128/EC.00011-15. Epub 2015 Mar 6.

Supplemental Content

Support Center