Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Accidental degeneracy of double Dirac cones in a phononic crystal.

Chen ZG, Ni X, Wu Y, He C, Sun XC, Zheng LY, Lu MH, Chen YF.

Sci Rep. 2014 Apr 9;4:4613. doi: s10.1038/srep04613.

2.

Double Dirac cones in triangular-lattice metamaterials.

Sakoda K.

Opt Express. 2012 Apr 23;20(9):9925-39. doi: 10.1364/OE.20.009925.

PMID:
22535085
3.

Double Dirac cones in two-dimensional dielectric photonic crystals.

Li Y, Mei J.

Opt Express. 2015 May 4;23(9):12089-99. doi: 10.1364/OE.23.012089.

PMID:
25969297
4.

Proof of the universality of mode symmetries in creating photonic Dirac cones.

Sakoda K.

Opt Express. 2012 Oct 22;20(22):25181-94. doi: 10.1364/OE.20.025181.

PMID:
23187284
5.

Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.

Huang X, Lai Y, Hang ZH, Zheng H, Chan CT.

Nat Mater. 2011 May 29;10(8):582-6. doi: 10.1038/nmat3030.

PMID:
21623377
6.

Dirac cone in two- and three-dimensional metamaterials.

Sakoda K.

Opt Express. 2012 Feb 13;20(4):3898-917. doi: 10.1364/OE.20.003898.

PMID:
22418147
7.

Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.

Weick G, Woollacott C, Barnes WL, Hess O, Mariani E.

Phys Rev Lett. 2013 Mar 8;110(10):106801. Epub 2013 Mar 5.

PMID:
23521276
8.

A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal.

Wu Y.

Opt Express. 2014 Jan 27;22(2):1906-17. doi: 10.1364/OE.22.001906.

PMID:
24515199
9.

Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons.

Jacqmin T, Carusotto I, Sagnes I, Abbarchi M, Solnyshkov DD, Malpuech G, Galopin E, Lemaître A, Bloch J, Amo A.

Phys Rev Lett. 2014 Mar 21;112(11):116402. Epub 2014 Mar 18.

PMID:
24702392
10.

'Parabolic' trapped modes and steered Dirac cones in platonic crystals.

McPhedran RC, Movchan AB, Movchan NV, Brun M, Smith MJ.

Proc Math Phys Eng Sci. 2015 May 8;471(2177):20140746.

11.

Dirac cones in two-dimensional systems: from hexagonal to square lattices.

Liu Z, Wang J, Li J.

Phys Chem Chem Phys. 2013 Nov 21;15(43):18855-62. doi: 10.1039/c3cp53257g.

PMID:
24084752
12.

Artificial honeycomb lattices for electrons, atoms and photons.

Polini M, Guinea F, Lewenstein M, Manoharan HC, Pellegrini V.

Nat Nanotechnol. 2013 Sep;8(9):625-33. doi: 10.1038/nnano.2013.161.

PMID:
24002076
13.

A first theoretical realization of honeycomb topological magnon insulator.

Owerre SA.

J Phys Condens Matter. 2016 Sep 28;28(38):386001. doi: 10.1088/0953-8984/28/38/386001. Epub 2016 Jul 20.

PMID:
27437569
14.

Dirac cone dispersion of acoustic waves in plates without phononic crystals (L).

Maznev AA.

J Acoust Soc Am. 2014 Feb;135(2):577-80. doi: 10.1121/1.4861234.

PMID:
25234866
15.

A bird's eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure.

Barreteau C, Ducastelle F, Mallah T.

J Phys Condens Matter. 2017 Nov 22;29(46):465302. doi: 10.1088/1361-648X/aa8fec.

PMID:
28960181
16.

Precise identification of Dirac-like point through a finite photonic crystal square matrix.

Dong G, Zhou J, Yang X, Meng X.

Sci Rep. 2016 Nov 18;6:36712. doi: 10.1038/srep36712.

17.

Spawning rings of exceptional points out of Dirac cones.

Zhen B, Hsu CW, Igarashi Y, Lu L, Kaminer I, Pick A, Chua SL, Joannopoulos JD, Soljačić M.

Nature. 2015 Sep 17;525(7569):354-8. doi: 10.1038/nature14889. Epub 2015 Sep 9.

PMID:
26352476
18.

Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point.

Chua SL, Lu L, Bravo-Abad J, Joannopoulos JD, Soljačić M.

Opt Lett. 2014 Apr 1;39(7):2072-5. doi: 10.1364/OL.39.002072.

PMID:
24686677
19.

Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.

Tarruell L, Greif D, Uehlinger T, Jotzu G, Esslinger T.

Nature. 2012 Mar 14;483(7389):302-5. doi: 10.1038/nature10871.

PMID:
22422263
20.

Existence of Dirac cones in the Brillouin zone of diperiodic atomic crystals according to group theory.

Damljanović V, Gajić R.

J Phys Condens Matter. 2016 Mar 2;28(8):085502. doi: 10.1088/0953-8984/28/8/085502. Epub 2016 Feb 1.

PMID:
26829015

Supplemental Content

Support Center