Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

A590T mutation in KCNQ1 C-terminal helix D decreases IKs channel trafficking and function but not Yotiao interaction.

Kinoshita K, Komatsu T, Nishide K, Hata Y, Hisajima N, Takahashi H, Kimoto K, Aonuma K, Tsushima E, Tabata T, Yoshida T, Mori H, Nishida K, Yamaguchi Y, Ichida F, Fukurotani K, Inoue H, Nishida N.

J Mol Cell Cardiol. 2014 Jul;72:273-80. doi: 10.1016/j.yjmcc.2014.03.019. Epub 2014 Apr 5.

PMID:
24713462
2.

Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.

Dvir M, Strulovich R, Sachyani D, Ben-Tal Cohen I, Haitin Y, Dessauer C, Pongs O, Kass R, Hirsch JA, Attali B.

J Cell Sci. 2014 Sep 15;127(Pt 18):3943-55. doi: 10.1242/jcs.147033. Epub 2014 Jul 18.

3.

The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart.

Li Y, Chen L, Kass RS, Dessauer CW.

J Biol Chem. 2012 Aug 24;287(35):29815-24. doi: 10.1074/jbc.M112.380568. Epub 2012 Jul 9.

4.

Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.

Spätjens RL, Bébarová M, Seyen SR, Lentink V, Jongbloed RJ, Arens YH, Heijman J, Volders PG.

Cardiovasc Res. 2014 Oct 1;104(1):216-25. doi: 10.1093/cvr/cvu191. Epub 2014 Aug 18.

PMID:
25139741
5.

KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.

Kurokawa J, Bankston JR, Kaihara A, Chen L, Furukawa T, Kass RS.

Channels (Austin). 2009 Jan-Feb;3(1):16-24. Epub 2009 Jan 7.

6.

Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome.

Hoosien M, Ahearn ME, Myerburg RJ, Pham TV, Miller TE, Smets MJ, Baumbach-Reardon L, Young ML, Farooq A, Bishopric NH.

Heart Rhythm. 2013 May;10(5):728-37. doi: 10.1016/j.hrthm.2012.12.033. Epub 2013 Jan 2.

7.

Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.

Heijman J, Spätjens RL, Seyen SR, Lentink V, Kuijpers HJ, Boulet IR, de Windt LJ, David M, Volders PG.

Circ Res. 2012 Jan 20;110(2):211-9. doi: 10.1161/CIRCRESAHA.111.249482. Epub 2011 Nov 17.

8.

Characterization of a novel mutant KCNQ1 channel subunit lacking a large part of the C-terminal domain.

Kimoto K, Kinoshita K, Yokoyama T, Hata Y, Komatsu T, Tsushima E, Nishide K, Yamaguchi Y, Mizumaki K, Tabata T, Inoue H, Nishida N, Fukurotani K.

Biochem Biophys Res Commun. 2013 Oct 18;440(2):283-8. doi: 10.1016/j.bbrc.2013.09.075. Epub 2013 Sep 23.

PMID:
24070608
9.

A molecular mechanism for adrenergic-induced long QT syndrome.

Wu J, Naiki N, Ding WG, Ohno S, Kato K, Zang WJ, Delisle BP, Matsuura H, Horie M.

J Am Coll Cardiol. 2014 Mar 4;63(8):819-27. doi: 10.1016/j.jacc.2013.08.1648. Epub 2013 Oct 30.

10.

Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations.

Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A, Wiener R, Hirsch J, Pongs O, Attali B.

Circ Res. 2006 Apr 28;98(8):1055-63. Epub 2006 Mar 23.

11.

Slow delayed rectifier potassium current blockade contributes importantly to drug-induced long QT syndrome.

Veerman CC, Verkerk AO, Blom MT, Klemens CA, Langendijk PN, van Ginneken AC, Wilders R, Tan HL.

Circ Arrhythm Electrophysiol. 2013 Oct;6(5):1002-9. doi: 10.1161/CIRCEP.113.000239. Epub 2013 Aug 31.

12.

LQT1 mutations in KCNQ1 C-terminus assembly domain suppress IKs using different mechanisms.

Aromolaran AS, Subramanyam P, Chang DD, Kobertz WR, Colecraft HM.

Cardiovasc Res. 2014 Dec 1;104(3):501-11. doi: 10.1093/cvr/cvu231. Epub 2014 Oct 24.

13.

Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1.

Wu M, Obara Y, Norota I, Nagasawa Y, Ishii K.

Pflugers Arch. 2014 May;466(5):937-46. doi: 10.1007/s00424-013-1352-7. Epub 2013 Sep 26.

PMID:
24068254
14.

Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation.

Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS.

Circ Res. 2005 Mar 18;96(5):e25-34. Epub 2005 Feb 24.

15.

Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.

Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R, Mack AF, Korniychuk G, Steinke K, Tapken D, Pfeufer A, Kääb S, Bucci C, Attali B, Merot J, Tavare JM, Hoppe UC, Sanguinetti MC, Lang F.

Circ Res. 2008 Dec 5;103(12):1451-7. doi: 10.1161/CIRCRESAHA.108.177360. Epub 2008 Nov 13.

16.

Characterization of an LQT5-related mutation in KCNE1, Y81C: implications for a role of KCNE1 cytoplasmic domain in IKs channel function.

Wu DM, Lai LP, Zhang M, Wang HL, Jiang M, Liu XS, Tseng GN.

Heart Rhythm. 2006 Sep;3(9):1031-40. Epub 2006 May 25.

PMID:
16945797
17.

BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs).

Agsten M, Hessler S, Lehnert S, Volk T, Rittger A, Hartmann S, Raab C, Kim DY, Groemer TW, Schwake M, Alzheimer C, Huth T.

J Mol Cell Cardiol. 2015 Dec;89(Pt B):335-48. doi: 10.1016/j.yjmcc.2015.10.006. Epub 2015 Oct 8.

PMID:
26454161
18.

Mutation of an A-kinase-anchoring protein causes long-QT syndrome.

Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS.

Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20990-5. Epub 2007 Dec 19.

19.

Mechanisms of disease pathogenesis in long QT syndrome type 5.

Harmer SC, Wilson AJ, Aldridge R, Tinker A.

Am J Physiol Cell Physiol. 2010 Feb;298(2):C263-73. doi: 10.1152/ajpcell.00308.2009. Epub 2009 Nov 11.

20.

Functional interactions between KCNE1 C-terminus and the KCNQ1 channel.

Chen J, Zheng R, Melman YF, McDonald TV.

PLoS One. 2009;4(4):e5143. doi: 10.1371/journal.pone.0005143. Epub 2009 Apr 2.

Supplemental Content

Support Center