Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction.

El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH, Nielsen J.

BMC Syst Biol. 2014 Apr 3;8:41. doi: 10.1186/1752-0509-8-41.

2.

Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.

Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, de los Reyes-Gavilan CG.

FEMS Microbiol Lett. 2015 Nov;362(21). pii: fnv176. doi: 10.1093/femsle/fnv176. Epub 2015 Sep 28.

PMID:
26420851
3.

Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.

Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ.

Appl Environ Microbiol. 2006 May;72(5):3593-9.

4.

Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.

Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P.

Br J Nutr. 2009 Feb;101(4):541-50. doi: 10.1017/S0007114508019880. Epub 2008 Jul 1.

PMID:
18590586
5.

Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe.

Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I.

J Bacteriol. 2014 Sep;196(18):3289-302. doi: 10.1128/JB.01780-14. Epub 2014 Jul 7.

6.

Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease.

Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, Wang G, Xia B.

J Clin Microbiol. 2014 Feb;52(2):398-406. doi: 10.1128/JCM.01500-13. Epub 2013 Nov 13.

7.

The Gut Microbiota from Lean and Obese Subjects Contribute Differently to the Fermentation of Arabinogalactan and Inulin.

Aguirre M, Bussolo de Souza C, Venema K.

PLoS One. 2016 Jul 13;11(7):e0159236. doi: 10.1371/journal.pone.0159236. eCollection 2016.

8.

Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L.

Duranti S, Turroni F, Lugli GA, Milani C, Viappiani A, Mangifesta M, Gioiosa L, Palanza P, van Sinderen D, Ventura M.

Appl Environ Microbiol. 2014 Oct;80(19):6080-90. doi: 10.1128/AEM.01993-14. Epub 2014 Jul 25.

9.

Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease.

Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A.

J Gastroenterol Hepatol. 2013 Apr;28(4):613-9. doi: 10.1111/jgh.12073.

PMID:
23216550
10.

Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii.

Moens F, Weckx S, De Vuyst L.

Int J Food Microbiol. 2016 Aug 16;231:76-85. doi: 10.1016/j.ijfoodmicro.2016.05.015. Epub 2016 May 12.

PMID:
27233082
11.

Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

Song H, Yoo Y, Hwang J, Na YC, Kim HS.

J Allergy Clin Immunol. 2016 Mar;137(3):852-60. doi: 10.1016/j.jaci.2015.08.021. Epub 2015 Oct 1.

12.

Genomics and ecological overview of the genus Bifidobacterium.

Turroni F, van Sinderen D, Ventura M.

Int J Food Microbiol. 2011 Sep 1;149(1):37-44. doi: 10.1016/j.ijfoodmicro.2010.12.010. Epub 2010 Dec 28. Review.

PMID:
21276626
13.

Lessons from the genomes of bifidobacteria.

Klijn A, Mercenier A, Arigoni F.

FEMS Microbiol Rev. 2005 Aug;29(3):491-509. Review.

14.

Carbohydrates and the human gut microbiota.

Chassard C, Lacroix C.

Curr Opin Clin Nutr Metab Care. 2013 Jul;16(4):453-60. doi: 10.1097/MCO.0b013e3283619e63. Review.

PMID:
23719143
15.

Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters.

Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB, Ehrhart-Bornstein M, Lamounier-Zepter V, Lohmann T, Wolf T, Bornstein SR.

Pharmacogenomics J. 2013 Dec;13(6):514-22. doi: 10.1038/tpj.2012.43. Epub 2012 Oct 2.

PMID:
23032991
16.

The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases.

Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ.

ISME J. 2012 Aug;6(8):1578-85. doi: 10.1038/ismej.2012.5. Epub 2012 Feb 23.

17.

Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum.

Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario C, Viappiani A, Mangifesta M, Mancino W, Gueimonde M, Margolles A, van Sinderen D, Ventura M.

Environ Microbiol. 2015 Jul;17(7):2515-31. doi: 10.1111/1462-2920.12743. Epub 2015 Feb 14.

PMID:
25523018
18.

Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis.

Liu W, Zhang J, Wu C, Cai S, Huang W, Chen J, Xi X, Liang Z, Hou Q, Zhou B, Qin N, Zhang H.

Sci Rep. 2016 Oct 6;6:34826. doi: 10.1038/srep34826. Erratum in: Sci Rep. 2017 Jan 04;7:39576.

19.

Immunology and probiotic impact of the newborn and young children intestinal microflora.

Bezirtzoglou E, Stavropoulou E.

Anaerobe. 2011 Dec;17(6):369-74. doi: 10.1016/j.anaerobe.2011.03.010. Epub 2011 Apr 16. Review.

PMID:
21515397
20.

Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data.

Vital M, Howe AC, Tiedje JM.

MBio. 2014 Apr 22;5(2):e00889. doi: 10.1128/mBio.00889-14.

Supplemental Content

Support Center