Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85


Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase.

Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, Kubo K.

J Radiat Res. 2014 Jul;55(4):707-12. doi: 10.1093/jrr/rru021.


The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.

Hegde PM, Dutta A, Sengupta S, Mitra J, Adhikari S, Tomkinson AE, Li GM, Boldogh I, Hazra TK, Mitra S, Hegde ML.

J Biol Chem. 2015 Aug 21;290(34):20919-33. doi: 10.1074/jbc.M115.642918.


Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins.

Hegde ML, Hegde PM, Bellot LJ, Mandal SM, Hazra TK, Li GM, Boldogh I, Tomkinson AE, Mitra S.

Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):E3090-9. doi: 10.1073/pnas.1304231110.


NEIL1 mRNA splicing variants are expressed in normal mouse organs.

Yamamoto R, Yamamoto M, Kusaka H, Masatsugu H, Matsuyama S, Tajima T, Ide H, Kubo K.

J Radiat Res. 2012;53(2):234-41.


Physical and functional interaction between human oxidized base-specific DNA glycosylase NEIL1 and flap endonuclease 1.

Hegde ML, Theriot CA, Das A, Hegde PM, Guo Z, Gary RK, Hazra TK, Shen B, Mitra S.

J Biol Chem. 2008 Oct 3;283(40):27028-37. doi: 10.1074/jbc.M802712200.


New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML.

Cell Mol Life Sci. 2015 May;72(9):1679-98. doi: 10.1007/s00018-014-1820-z. Review.


The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death.

Rosenquist TA, Zaika E, Fernandes AS, Zharkov DO, Miller H, Grollman AP.

DNA Repair (Amst). 2003 May 13;2(5):581-91.


Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes.

Dou H, Theriot CA, Das A, Hegde ML, Matsumoto Y, Boldogh I, Hazra TK, Bhakat KK, Mitra S.

J Biol Chem. 2008 Feb 8;283(6):3130-40.


Superior removal of hydantoin lesions relative to other oxidized bases by the human DNA glycosylase hNEIL1.

Krishnamurthy N, Zhao X, Burrows CJ, David SS.

Biochemistry. 2008 Jul 8;47(27):7137-46. doi: 10.1021/bi800160s.


Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.

Hailer MK, Slade PG, Martin BD, Rosenquist TA, Sugden KD.

DNA Repair (Amst). 2005 Jan 2;4(1):41-50.


A novel monofunctional DNA glycosylase activity against thymine glycol in mouse cell nuclei.

Yamamoto R, Akiyama M, Ide H, Yamamoto K, Matsuyama S, Kubo K.

J Radiat Res. 2008 May;49(3):249-59.


Human NEIL1 localizes with the centrosomes and condensed chromosomes during mitosis.

Hildrestrand GA, Rolseth V, Bjørås M, Luna L.

DNA Repair (Amst). 2007 Oct 1;6(10):1425-33.


Mutator phenotype of mammalian cells due to deficiency of NEIL1 DNA glycosylase, an oxidized base-specific repair enzyme.

Maiti AK, Boldogh I, Spratt H, Mitra S, Hazra TK.

DNA Repair (Amst). 2008 Aug 2;7(8):1213-20. doi: 10.1016/j.dnarep.2008.03.025.


Structural and functional properties of CiNTH, an endonuclease III homologue of the ascidian Ciona intestinalis: critical role of N-terminal region.

Kato S, Hashiguchi K, Igarashi K, Moriwaki T, Yonekura S, Zhang-Akiyama QM.

Genes Genet Syst. 2012;87(2):115-24.


DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the hNEIL1 and hNTH1 enzymes in human cells.

Zhang QM, Yonekura S, Takao M, Yasui A, Sugiyama H, Yonei S.

DNA Repair (Amst). 2005 Jan 2;4(1):71-9.


Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair.

Panigrahi SK, Hopkins KM, Lieberman HB.

Nucleic Acids Res. 2015 May 19;43(9):4531-46. doi: 10.1093/nar/gkv327.


Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei.

Nakabeppu Y, Tsuchimoto D, Ichinoe A, Ohno M, Ide Y, Hirano S, Yoshimura D, Tominaga Y, Furuichi M, Sakumi K.

Ann N Y Acad Sci. 2004 Apr;1011:101-11.

Items per page

Supplemental Content

Support Center