Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

In situ profiling of lithium/Ag₂VP₂O₈ primary batteries using energy dispersive X-ray diffraction.

Kirshenbaum KC, Bock DC, Zhong Z, Marschilok AC, Takeuchi KJ, Takeuchi ES.

Phys Chem Chem Phys. 2014 May 21;16(19):9138-47. doi: 10.1039/c4cp01220h.

PMID:
24705594
2.

Batteries. In situ visualization of Li/Ag₂VP₂O₈ batteries revealing rate-dependent discharge mechanism.

Kirshenbaum K, Bock DC, Lee CY, Zhong Z, Takeuchi KJ, Marschilok AC, Takeuchi ES.

Science. 2015 Jan 9;347(6218):149-54. doi: 10.1126/science.1257289.

3.

Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.

Durham JL, Poyraz AS, Takeuchi ES, Marschilok AC, Takeuchi KJ.

Acc Chem Res. 2016 Sep 20;49(9):1864-72. doi: 10.1021/acs.accounts.6b00318. Epub 2016 Aug 26.

PMID:
27564839
4.

Silver Vanadium Diphosphate Ag2VP2O8: Electrochemistry and Characterization of Reduced Material providing Mechanistic Insights.

Takeuchi ES, Lee CY, Chen PJ, Menard MC, Marschilok AC, Takeuchi KJ.

J Solid State Chem. 2013 Apr;200:232-240.

5.

Visualization of structural evolution and phase distribution of a lithium vanadium oxide (Li1.1V3O8) electrode via an operando and in situ energy dispersive X-ray diffraction technique.

Zhang Q, Bruck AM, Bock DC, Li J, Sarbada V, Hull R, Stach EA, Takeuchi KJ, Takeuchi ES, Marschilok AC.

Phys Chem Chem Phys. 2017 May 31;19(21):14160-14169. doi: 10.1039/c7cp02239e.

PMID:
28530304
6.

Operando observation of the gold-electrolyte interface in Li-O2 batteries.

Gittleson FS, Ryu WH, Taylor AD.

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):19017-25. doi: 10.1021/am504900k. Epub 2014 Oct 31.

PMID:
25318060
7.

In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.

Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews JC, Cui Y, Toney MF.

J Am Chem Soc. 2012 Apr 11;134(14):6337-43. doi: 10.1021/ja2121926. Epub 2012 Mar 30.

PMID:
22432568
8.

Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation.

Finegan DP, Tudisco E, Scheel M, Robinson JB, Taiwo OO, Eastwood DS, Lee PD, Di Michiel M, Bay B, Hall SA, Hinds G, Brett DJ, Shearing PR.

Adv Sci (Weinh). 2015 Dec 18;3(3):1500332. eCollection 2016 Mar.

9.

Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction.

Tonin G, Vaughan G, Bouchet R, Alloin F, Di Michiel M, Boutafa L, Colin JF, Barchasz C.

Sci Rep. 2017 Jun 5;7(1):2755. doi: 10.1038/s41598-017-03004-4.

10.

In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.

Sharma N, Pang WK, Guo Z, Peterson VK.

ChemSusChem. 2015 Sep 7;8(17):2826-53. doi: 10.1002/cssc.201500152. Epub 2015 Jul 29.

PMID:
26223736
11.

X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.

Deb A, Bergmann U, Cairns EJ, Cramer SP.

J Synchrotron Radiat. 2004 Nov 1;11(Pt 6):497-504. Epub 2004 Oct 22.

PMID:
15496738
12.

Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction.

Katayama M, Miyahara R, Watanabe T, Yamagishi H, Yamashita S, Kizaki T, Sugawara Y, Inada Y.

J Synchrotron Radiat. 2015 Sep;22(5):1227-32. doi: 10.1107/S1600577515012990. Epub 2015 Jul 17.

PMID:
26289274
13.

In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.

Shui JL, Okasinski JS, Chen C, Almer JD, Liu DJ.

ChemSusChem. 2014 Feb;7(2):543-8. doi: 10.1002/cssc.201300822. Epub 2014 Jan 7.

PMID:
24399807
14.

An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer.

Shen Y, Pedersen EE, Christensen M, Iversen BB.

Rev Sci Instrum. 2014 Oct;85(10):104103. doi: 10.1063/1.4896198.

PMID:
25362421
15.

Lithium/silver vanadium oxide batteries for implantable defibrillators.

Takeuchi ES, Quattrini PJ, Greatbatch W.

Pacing Clin Electrophysiol. 1988 Nov;11(11 Pt 2):2035-9.

PMID:
2463584
16.

New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization.

Waluś S, Barchasz C, Colin JF, Martin JF, Elkaïm E, Leprêtre JC, Alloin F.

Chem Commun (Camb). 2013 Sep 18;49(72):7899-901. doi: 10.1039/c3cc43766c. Epub 2013 Jul 22.

PMID:
23873017
17.
18.

Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction.

Ganapathy S, Adams BD, Stenou G, Anastasaki MS, Goubitz K, Miao XF, Nazar LF, Wagemaker M.

J Am Chem Soc. 2014 Nov 19;136(46):16335-44. doi: 10.1021/ja508794r. Epub 2014 Nov 5.

PMID:
25341076
19.

LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.

Chen N, Yao Y, Wang D, Wei Y, Bie X, Wang C, Chen G, Du F.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10661-6. doi: 10.1021/am502352c. Epub 2014 Jun 18.

PMID:
24905851
20.

Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S.

J Am Chem Soc. 2011 Mar 30;133(12):4404-19. doi: 10.1021/ja108588y. Epub 2011 Mar 4.

PMID:
21375288

Supplemental Content

Support Center