Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Design of activated serine-containing catalytic triads with atomic-level accuracy.

Rajagopalan S, Wang C, Yu K, Kuzin AP, Richter F, Lew S, Miklos AE, Matthews ML, Seetharaman J, Su M, Hunt JF, Cravatt BF, Baker D.

Nat Chem Biol. 2014 May;10(5):386-91. doi: 10.1038/nchembio.1498. Epub 2014 Apr 6.

2.

Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad.

Sun Y, Yin S, Feng Y, Li J, Zhou J, Liu C, Zhu G, Guo Z.

J Biol Chem. 2014 May 30;289(22):15867-79. doi: 10.1074/jbc.M113.535641. Epub 2014 Apr 15.

3.

A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: crystal structure and site-directed mutagenesis studies.

Yamada T, Komoto J, Kasuya T, Takata Y, Ogawa H, Mori H, Takusagawa F.

Biochim Biophys Acta. 2008 May;1780(5):809-18. doi: 10.1016/j.bbagen.2008.01.020. Epub 2008 Feb 19.

PMID:
18342636
4.
5.
7.

De novo computational design of retro-aldol enzymes.

Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D, Houk KN, Stoddard BL, Baker D.

Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.

8.

Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

Wulff G, Liu J.

Acc Chem Res. 2012 Feb 21;45(2):239-47. doi: 10.1021/ar200146m. Epub 2011 Oct 3.

PMID:
21967389
9.

Distinct substrate selectivity of a metabolic hydrolase from Mycobacterium tuberculosis.

Lukowski JK, Savas CP, Gehring AM, McKary MG, Adkins CT, Lavis LD, Hoops GC, Johnson RJ.

Biochemistry. 2014 Dec 2;53(47):7386-95. doi: 10.1021/bi501108u. Epub 2014 Nov 17.

PMID:
25354081
10.

Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle.

Smith AJ, Müller R, Toscano MD, Kast P, Hellinga HW, Hilvert D, Houk KN.

J Am Chem Soc. 2008 Nov 19;130(46):15361-73. doi: 10.1021/ja803213p. Epub 2008 Oct 22.

12.
13.

The charge density distribution in a model compound of the catalytic triad in serine proteases.

Overgaard J, Schiøtt B, Larsen FK, Iversen BB.

Chemistry. 2001 Sep 3;7(17):3756-67.

PMID:
11575777
15.

Esterolytic antibodies as mechanistic and structural models of hydrolases-a quantitative analysis.

Lindner AB, Kim SH, Schindler DG, Eshhar Z, Tawfik DS.

J Mol Biol. 2002 Jul 12;320(3):559-72.

PMID:
12096909
16.

Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.

Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z.

Biochemistry. 2009 Jul 28;48(29):6921-31. doi: 10.1021/bi900897h.

PMID:
19545176
17.
18.

Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.

Li C, Montgomery MG, Mohammed F, Li JJ, Wood SP, Bugg TD.

J Mol Biol. 2005 Feb 11;346(1):241-51. Epub 2004 Dec 13.

PMID:
15663941
19.

Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.

Golden E, Paterson R, Tie WJ, Anandan A, Flematti G, Molla G, Rosini E, Pollegioni L, Vrielink A.

Biochem J. 2013 Apr 15;451(2):217-26. doi: 10.1042/BJ20121715.

PMID:
23373797
20.

Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase.

Vyas NK, Nickitenko A, Rastogi VK, Shah SS, Quiocho FA.

Biochemistry. 2010 Jan 26;49(3):547-59. doi: 10.1021/bi9011989. Erratum in: Biochemistry. 2010 Mar 16;49(10):2305.

PMID:
20000741

Supplemental Content

Support Center