Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics.

Conde J, Bao C, Cui D, Baptista PV, Tian F.

J Control Release. 2014 Jun 10;183:87-93. doi: 10.1016/j.jconrel.2014.03.045. Epub 2014 Apr 1.

PMID:
24704711
2.

Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S, Curran GL, Shah V, Curley S, Mukhopadhyay D, Robertson JD, Bhattacharya R, Mukherjee P.

PLoS One. 2011;6(6):e20347. doi: 10.1371/journal.pone.0020347. Epub 2011 Jun 27.

3.

The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system.

Hsieh DS, Lu HC, Chen CC, Wu CJ, Yeh MK.

Int J Nanomedicine. 2012;7:1623-33. doi: 10.2147/IJN.S30060. Epub 2012 Mar 28.

4.

Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice.

Hurwitz SJ, Zhang H, Yun S, Batuwangala TD, Steward M, Holmes SD, Rycroft D, Pan L, Tighiouart M, Shin HJ, Koenig L, Wang Y, Chen ZG, Shin DM.

Cancer Chemother Pharmacol. 2012 Mar;69(3):577-90. doi: 10.1007/s00280-011-1713-x. Epub 2011 Sep 13.

PMID:
21913035
5.

Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its in vivo bioluminescence tomographic evaluation.

Ma X, Hui H, Jin Y, Dong D, Liang X, Yang X, Tan K, Dai Z, Cheng Z, Tian J.

Biomaterials. 2016 May;87:46-56. doi: 10.1016/j.biomaterials.2016.02.007. Epub 2016 Feb 8.

6.

Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.

Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP.

J Am Chem Soc. 2013 Jan 9;135(1):301-8. doi: 10.1021/ja309300d. Epub 2012 Dec 27.

PMID:
23214430
7.

Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles.

Wang Y, Tang LJ, Jiang JH.

Anal Chem. 2013 Oct 1;85(19):9213-20. doi: 10.1021/ac4019439. Epub 2013 Sep 17.

PMID:
23998432
8.

Facile synthesis of Raman active phospholipid gold nanoparticles.

Tam NC, Scott BM, Voicu D, Wilson BC, Zheng G.

Bioconjug Chem. 2010 Dec 15;21(12):2178-82. doi: 10.1021/bc100386a. Epub 2010 Nov 19.

PMID:
21090645
9.

In vivo molecular imaging with cetuximab, an anti-EGFR antibody, for prediction of response in xenograft models of human colorectal cancer.

Goetz M, Hoetker MS, Diken M, Galle PR, Kiesslich R.

Endoscopy. 2013 Jun;45(6):469-77. doi: 10.1055/s-0032-1326361. Epub 2013 Apr 11.

PMID:
23580409
10.

Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting.

Matar P, Rojo F, Cassia R, Moreno-Bueno G, Di Cosimo S, Tabernero J, Guzmán M, Rodriguez S, Arribas J, Palacios J, Baselga J.

Clin Cancer Res. 2004 Oct 1;10(19):6487-501.

11.

Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering.

Xie W, Wang L, Zhang Y, Su L, Shen A, Tan J, Hu J.

Bioconjug Chem. 2009 Apr;20(4):768-73. doi: 10.1021/bc800469g.

PMID:
19267459
12.

Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.

Roca M, Haes AJ.

J Am Chem Soc. 2008 Oct 29;130(43):14273-9. doi: 10.1021/ja8059039. Epub 2008 Oct 3.

PMID:
18831552
13.

Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines.

Cavazzoni A, Alfieri RR, Cretella D, Saccani F, Ampollini L, Galetti M, Quaini F, Graiani G, Madeddu D, Mozzoni P, Galvani E, La Monica S, Bonelli M, Fumarola C, Mutti A, Carbognani P, Tiseo M, Barocelli E, Petronini PG, Ardizzoni A.

Mol Cancer. 2012 Dec 12;11:91. doi: 10.1186/1476-4598-11-91.

15.

Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells.

Lee SM, Park H, Choi JW, Park YN, Yun CO, Yoo KH.

Angew Chem Int Ed Engl. 2011 Aug 8;50(33):7581-6. doi: 10.1002/anie.201101783. Epub 2011 Jun 30. No abstract available.

PMID:
21721086
16.

Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection.

Indrasekara AS, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L.

Adv Healthc Mater. 2013 Oct;2(10):1370-6. doi: 10.1002/adhm.201200370. Epub 2013 Mar 12.

PMID:
23495174
17.
18.

Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.

Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP.

J Am Chem Soc. 2010 Aug 11;132(31):10903-10. doi: 10.1021/ja104174m.

PMID:
20681724
19.

Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.

Yilmaz M, Senlik E, Biskin E, Yavuz MS, Tamer U, Demirel G.

Phys Chem Chem Phys. 2014 Mar 28;16(12):5563-70. doi: 10.1039/c3cp55087g. Epub 2014 Feb 10.

PMID:
24514029
20.

Supplemental Content

Support Center