Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

L-Phenylalanine Transport in Saccharomyces cerevisiae: Participation of GAP1, BAP2, and AGP1.

Sáenz DA, Chianelli MS, Stella CA.

J Amino Acids. 2014;2014:283962. doi: 10.1155/2014/283962. Epub 2014 Feb 20.

2.

Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae.

Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA.

J Bacteriol. 1996 Apr;178(7):2025-9.

3.

L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.

Kotliar N, Stella CA, Ramos EH, Mattoon JR.

Cell Mol Biol (Noisy-le-grand). 1994 Sep;40(6):833-42.

PMID:
7812191
4.

Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases.

Düring-Olsen L, Regenberg B, Gjermansen C, Kielland-Brandt MC, Hansen J.

Curr Genet. 1999 Jul;35(6):609-17.

PMID:
10467005
5.

Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae.

Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S.

Curr Genet. 1999 Dec;36(6):317-28.

PMID:
10654085
6.

Brefeldin A decreases the activity of the general amino acid permease (GAP1) and the more specific systems for L-leucine uptake in Saccharomyces cerevisiae.

Alonso M, Burgos HI, Pannunzio V, Monti Hughes A, Mattoon JR, Stella CA.

Cell Mol Biol Lett. 2006;11(2):256-63.

PMID:
16847570
7.

RAS2/PKA pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces cerevisiae.

Sáenz DA, Chianelli MS, Stella CA, Mattoon JR, Ramos EH.

Int J Biochem Cell Biol. 1997 Mar;29(3):505-12.

PMID:
9202429
9.

Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

Usami Y, Uemura S, Mochizuki T, Morita A, Shishido F, Inokuchi J, Abe F.

Biochim Biophys Acta. 2014 Jul;1838(7):1719-29. doi: 10.1016/j.bbamem.2014.03.018. Epub 2014 Mar 31.

10.
12.

The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae.

Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM.

Mol Microbiol. 2003 Nov;50(3):911-29.

13.

Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae.

Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kötter P, Dickinson JR, Daran JM, Pronk JT.

Appl Environ Microbiol. 2005 Jun;71(6):3276-84.

14.

Isolation of a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae deficient in both high- and low-affinity L-leucine transport.

Chianelli MS, Stella CA, Sáenz DA, Ramos EH, Kotliar N, Mattoon JR.

Cell Mol Biol (Noisy-le-grand). 1996 Sep;42(6):847-57.

PMID:
8891352
15.

Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast.

Jørgensen MU, Bruun MB, Didion T, Kielland-Brandt MC.

Yeast. 1998 Jan 30;14(2):103-14.

16.
17.
18.

Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a.

Omura F, Hatanaka H, Nakao Y.

FEMS Yeast Res. 2007 Dec;7(8):1350-61. Epub 2007 Sep 6.

19.
20.

Supplemental Content

Support Center