Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Multilevel nonvolatile flexible organic field-effect transistor memories employing polyimide electrets with different charge-transfer effects.

Yu AD, Tung WY, Chiu YC, Chueh CC, Liou GS, Chen WC.

Macromol Rapid Commun. 2014 Jun;35(11):1039-45. doi: 10.1002/marc.201400089. Epub 2014 Apr 4.

PMID:
24700508
2.

High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends.

Chiu YC, Chen TY, Chen Y, Satoh T, Kakuchi T, Chen WC.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12780-8. doi: 10.1021/am502732d. Epub 2014 Jul 14.

PMID:
24998629
3.

High Performance Nonvolatile Transistor Memories Utilizing Functional Polyimide-Based Supramolecular Electrets.

Tung WY, Li MH, Wu HC, Liu HY, Hsieh YT, Chen WC.

Chem Asian J. 2016 May 20;11(10):1631-40. doi: 10.1002/asia.201600365. Epub 2016 Apr 23.

PMID:
27061212
4.

Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation.

Hwang SK, Park TJ, Kim KL, Cho SM, Jeong BJ, Park C.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20179-87. doi: 10.1021/am505750v. Epub 2014 Nov 6.

PMID:
25341965
5.

Tunable electrical memory characteristics using polyimide:polycyclic aromatic compound blends on flexible substrates.

Yu AD, Kurosawa T, Chou YH, Aoyagi K, Shoji Y, Higashihara T, Ueda M, Liu CL, Chen WC.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4921-9. doi: 10.1021/am4006594. Epub 2013 May 16.

PMID:
23646879
6.

Dynamic random access memory effect and memory device derived from a functional polyimide containing electron donor-acceptor pairs in the main chain.

Tian G, Wu D, Qi S, Wu Z, Wang X.

Macromol Rapid Commun. 2011 Feb 16;32(4):384-9. doi: 10.1002/marc.201000570. Epub 2010 Dec 3.

PMID:
21433188
7.

The origin of excellent gate-bias stress stability in organic field-effect transistors employing fluorinated-polymer gate dielectrics.

Kim J, Jang J, Kim K, Kim H, Kim SH, Park CE.

Adv Mater. 2014 Nov 12;26(42):7241-6. doi: 10.1002/adma.201402363. Epub 2014 Sep 29.

PMID:
25263950
8.

High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

Li W, Guo F, Ling H, Zhang P, Yi M, Wang L, Wu D, Xie L, Huang W.

Adv Sci (Weinh). 2017 Jun 4;4(8):1700007. doi: 10.1002/advs.201700007. eCollection 2017 Aug.

9.

Nonvolatile organic field-effect transistors memory devices using supramolecular block copolymer/functional small molecule nanocomposite electret.

Chi HY, Hsu HW, Tung SH, Liu CL.

ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5663-73. doi: 10.1021/acsami.5b00338. Epub 2015 Mar 4.

PMID:
25711539
10.

25th anniversary article: key points for high-mobility organic field-effect transistors.

Dong H, Fu X, Liu J, Wang Z, Hu W.

Adv Mater. 2013 Nov 20;25(43):6158-83. doi: 10.1002/adma.201302514. Epub 2013 Sep 18. Review.

PMID:
24105677
11.

Control of carrier density by self-assembled monolayers in organic field-effect transistors.

Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y.

Nat Mater. 2004 May;3(5):317-22. Epub 2004 Apr 4.

PMID:
15064756
12.

Anodized aluminum oxide thin films for room-temperature-processed, flexible, low-voltage organic non-volatile memory elements with excellent charge retention.

Kaltenbrunner M, Stadler P, Schwödiauer R, Hassel AW, Sariciftci NS, Bauer S.

Adv Mater. 2011 Nov 9;23(42):4892-6. doi: 10.1002/adma.201103189. Epub 2011 Sep 29. No abstract available.

PMID:
21956649
13.

n-Channel semiconductor materials design for organic complementary circuits.

Usta H, Facchetti A, Marks TJ.

Acc Chem Res. 2011 Jul 19;44(7):501-10. doi: 10.1021/ar200006r. Epub 2011 May 26.

PMID:
21615105
14.

Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.

Yoon J, Hong WK, Jo M, Jo G, Choe M, Park W, Sohn JI, Nedic S, Hwang H, Welland ME, Lee T.

ACS Nano. 2011 Jan 25;5(1):558-64. doi: 10.1021/nn102633z. Epub 2010 Dec 14.

PMID:
21155534
15.

Compatibility enhancement of polyimide-silica hybrid sol-gel materials without incorporation of silane-coupling agent.

Hung WI, Weng CJ, Huang KY, Wu PS, Dai JK, Chang YH, Tsai MH, Yeh JM, Yu YH.

J Nanosci Nanotechnol. 2011 Apr;11(4):3454-63.

PMID:
21776723
16.

Disordered self assembled monolayer dielectric induced hysteresis in organic field effect transistors.

Padma N, Saxena V, Sudarsan V, Rava H, Sen S.

J Nanosci Nanotechnol. 2014 Jun;14(6):4418-23.

PMID:
24738406
17.

Flexible organic transistor memory devices.

Kim SJ, Lee JS.

Nano Lett. 2010 Aug 11;10(8):2884-90. doi: 10.1021/nl1009662.

PMID:
20578683
18.

Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

Lee TJ, Chang CW, Hahm SG, Kim K, Park S, Kim DM, Kim J, Kwon WS, Liou GS, Ree M.

Nanotechnology. 2009 Apr 1;20(13):135204. doi: 10.1088/0957-4484/20/13/135204. Epub 2009 Mar 10.

PMID:
19420490
19.

Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide.

Kim DM, Park S, Lee TJ, Hahm SG, Kim K, Kim JC, Kwon W, Ree M.

Langmuir. 2009 Oct 6;25(19):11713-9. doi: 10.1021/la901896z.

PMID:
19743827
20.

Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor.

Sohn JI, Choi SS, Morris SM, Bendall JS, Coles HJ, Hong WK, Jo G, Lee T, Welland ME.

Nano Lett. 2010 Nov 10;10(11):4316-20. doi: 10.1021/nl1013713.

PMID:
20945844

Supplemental Content

Support Center