Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

[Methane-generating potential of coal samples with different maturity].

He Q, Ding C, Li G, Cheng H, Cheng L, Zhang H.

Wei Sheng Wu Xue Bao. 2013 Dec 4;53(12):1307-17. Chinese.

PMID:
24697103
2.

Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China.

Guo H, Yu Z, Liu R, Zhang H, Zhong Q, Xiong Z.

Appl Microbiol Biotechnol. 2012 Dec;96(6):1587-97.

PMID:
22286516
3.

A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China.

Guo H, Yu Z, Thompson IP, Zhang H.

Appl Microbiol Biotechnol. 2014 Nov;98(21):9083-93. doi: 10.1007/s00253-014-5908-z. Epub 2014 Jul 11.

PMID:
25012785
4.

Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin.

Wawrik B, Mendivelso M, Parisi VA, Suflita JM, Davidova IA, Marks CR, Van Nostrand JD, Liang Y, Zhou J, Huizinga BJ, Strąpoć D, Callaghan AV.

FEMS Microbiol Ecol. 2012 Jul;81(1):26-42. doi: 10.1111/j.1574-6941.2011.01272.x. Epub 2012 Jan 11.

5.

Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane.

Singh DN, Kumar A, Sarbhai MP, Tripathi AK.

Appl Microbiol Biotechnol. 2012 Feb;93(3):1337-50. doi: 10.1007/s00253-011-3778-1. Epub 2011 Dec 28. Erratum in: Appl Microbiol Biotechnol. 2012 Mar;93(5):2249-50.

PMID:
22202965
6.

Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium.

Cheng L, He Q, Ding C, Dai LR, Li Q, Zhang H.

FEMS Microbiol Ecol. 2013 Sep;85(3):568-77. doi: 10.1111/1574-6941.12141. Epub 2013 May 28.

7.

Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y.

PLoS One. 2014 Nov 19;9(11):e113253. doi: 10.1371/journal.pone.0113253. eCollection 2014.

8.

Methanogenic octadecene degradation by syntrophic enrichment culture from brackish sediments.

Hirschler-Réa A, Cravo-Laureau C, Casalot L, Matheron R.

Curr Microbiol. 2012 Nov;65(5):561-7. Epub 2012 Jul 28.

PMID:
22842907
9.

Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

Siddique T, Penner T, Klassen J, Nesbø C, Foght JM.

Environ Sci Technol. 2012 Sep 4;46(17):9802-10. doi: 10.1021/es302202c. Epub 2012 Aug 23.

PMID:
22894132
10.

Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding.

Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K.

Appl Microbiol Biotechnol. 2011 Sep;91(5):1447-61. doi: 10.1007/s00253-011-3479-9. Epub 2011 Jul 26.

PMID:
21789494
11.

Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate.

Lv L, Mbadinga SM, Wang LY, Liu JF, Gu JD, Mu BZ, Yang SZ.

Appl Microbiol Biotechnol. 2015 Sep;99(18):7757-69. doi: 10.1007/s00253-015-6669-z. Epub 2015 May 20.

PMID:
25985849
12.

Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir.

Mbadinga SM, Li KP, Zhou L, Wang LY, Yang SZ, Liu JF, Gu JD, Mu BZ.

Appl Microbiol Biotechnol. 2012 Oct;96(2):531-42. doi: 10.1007/s00253-011-3828-8. Epub 2012 Jan 17.

PMID:
22249716
13.

Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons.

Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM.

FEMS Microbiol Ecol. 2012 Jul;81(1):124-33. doi: 10.1111/j.1574-6941.2012.01328.x. Epub 2012 Mar 8.

14.

Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.

Lazar CS, Dinasquet J, L'Haridon S, Pignet P, Toffin L.

Antonie Van Leeuwenhoek. 2011 Nov;100(4):639-53. doi: 10.1007/s10482-011-9620-z. Epub 2011 Jul 13.

PMID:
21751028
15.

Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.

Wilms R, Sass H, Köpke B, Cypionka H, Engelen B.

FEMS Microbiol Ecol. 2007 Mar;59(3):611-21. Epub 2006 Oct 24.

16.

The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

Hagen LH, Vivekanand V, Pope PB, Eijsink VG, Horn SJ.

Appl Microbiol Biotechnol. 2015 Jul;99(13):5749-61. doi: 10.1007/s00253-015-6623-0. Epub 2015 May 7.

PMID:
25947246
17.

Bioenergy production via microbial conversion of residual oil to natural gas.

Gieg LM, Duncan KE, Suflita JM.

Appl Environ Microbiol. 2008 May;74(10):3022-9. doi: 10.1128/AEM.00119-08. Epub 2008 Mar 31.

18.

Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

Gonzalez-Martinez A, Garcia-Ruiz MJ, Rodriguez-Sanchez A, Osorio F, Gonzalez-Lopez J.

Appl Microbiol Biotechnol. 2016 Jul;100(13):6013-33. doi: 10.1007/s00253-016-7393-z. Epub 2016 Mar 3.

PMID:
26940050
19.

Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond.

An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S, Bordenave S, Caffrey SM, Gieg LM, Sensen CW, Voordouw G.

Genome. 2013 Oct;56(10):612-8. doi: 10.1139/gen-2013-0083. Epub 2013 Jul 29.

20.

Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields.

Scavino AF, Ji Y, Pump J, Klose M, Claus P, Conrad R.

Environ Microbiol. 2013 Sep;15(9):2588-602. doi: 10.1111/1462-2920.12161. Epub 2013 Jun 13.

PMID:
23763330

Supplemental Content

Support Center