Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 158

1.

KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells.

Moran DM, Trusk PB, Pry K, Paz K, Sidransky D, Bacus SS.

Mol Cancer Ther. 2014 Jun;13(6):1611-24. doi: 10.1158/1535-7163.MCT-13-0649. Epub 2014 Mar 31.

2.

Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy.

Sunaga N, Shames DS, Girard L, Peyton M, Larsen JE, Imai H, Soh J, Sato M, Yanagitani N, Kaira K, Xie Y, Gazdar AF, Mori M, Minna JD.

Mol Cancer Ther. 2011 Feb;10(2):336-46. doi: 10.1158/1535-7163.MCT-10-0750.

3.

Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer.

Sunaga N, Kaira K, Imai H, Shimizu K, Nakano T, Shames DS, Girard L, Soh J, Sato M, Iwasaki Y, Ishizuka T, Gazdar AF, Minna JD, Mori M.

Oncogene. 2013 Aug 22;32(34):4034-42. doi: 10.1038/onc.2012.402. Epub 2012 Sep 10.

4.

Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells.

Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, Wen X, Liu D, Shi H, Yuan J, Liu J, Liu B.

Cell Death Dis. 2013 Sep 26;4:e814. doi: 10.1038/cddis.2013.312.

5.

Contributions of KRAS and RAL in non-small-cell lung cancer growth and progression.

Guin S, Ru Y, Wynes MW, Mishra R, Lu X, Owens C, Barn AE, Vasu VT, Hirsch FR, Kern JA, Theodorescu D.

J Thorac Oncol. 2013 Dec;8(12):1492-501. doi: 10.1097/JTO.0000000000000007.

6.

WT1 enhances proliferation and impedes apoptosis in KRAS mutant NSCLC via targeting cMyc.

Wu C, Wang S, Xu C, Tyler A, Li X, Andersson C, Oji Y, Sugiyama H, Chen Y, Li A.

Cell Physiol Biochem. 2015;35(2):647-62. doi: 10.1159/000369726. Epub 2015 Jan 28.

7.

Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer.

Shimamura T, Chen Z, Soucheray M, Carretero J, Kikuchi E, Tchaicha JH, Gao Y, Cheng KA, Cohoon TJ, Qi J, Akbay E, Kimmelman AC, Kung AL, Bradner JE, Wong KK.

Clin Cancer Res. 2013 Nov 15;19(22):6183-92. doi: 10.1158/1078-0432.CCR-12-3904. Epub 2013 Sep 17.

8.

KRAS-mutation status dependent effect of zoledronic acid in human non-small cell cancer preclinical models.

Kenessey I, Kói K, Horváth O, Cserepes M, Molnár D, Izsák V, Dobos J, Hegedűs B, Tóvári J, Tímár J.

Oncotarget. 2016 Nov 29;7(48):79503-79514. doi: 10.18632/oncotarget.12806.

9.

Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer.

Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M.

Int J Cancer. 2012 Apr 15;130(8):1733-44. doi: 10.1002/ijc.26164. Epub 2011 Aug 3.

10.

Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC.

Liu W, Yin Y, Wang J, Shi B, Zhang L, Qian D, Li C, Zhang H, Wang S, Zhu J, Gao L, Zhang Q, Jia B, Hao L, Wang C, Zhang B.

Oncotarget. 2017 Jan 3;8(1):179-190. doi: 10.18632/oncotarget.10162.

11.

Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery.

Mao CQ, Xiong MH, Liu Y, Shen S, Du XJ, Yang XZ, Dou S, Zhang PZ, Wang J.

Mol Ther. 2014 May;22(5):964-73. doi: 10.1038/mt.2014.18. Epub 2014 Feb 5.

12.

MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells.

Kharbanda A, Rajabi H, Jin C, Alam M, Wong KK, Kufe D.

Oncotarget. 2014 Oct 15;5(19):8893-905.

13.

MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways.

Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, Perez-Stable C, Cohen A, Munoz A, Giribaldi MG, Singh S, Robbins DJ, Nguyen DM, Rai P.

Oncogene. 2015 May 14;34(20):2586-96. doi: 10.1038/onc.2014.195. Epub 2014 Jul 14.

14.

Bosutinib inhibits migration and invasion via ACK1 in KRAS mutant non-small cell lung cancer.

Tan DS, Haaland B, Gan JM, Tham SC, Sinha I, Tan EH, Lim KH, Takano A, Krisna SS, Thu MM, Liew HP, Ullrich A, Lim WT, Chua BT.

Mol Cancer. 2014 Jan 24;13:13. doi: 10.1186/1476-4598-13-13.

15.

Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab.

Dunn EF, Iida M, Myers RA, Campbell DA, Hintz KA, Armstrong EA, Li C, Wheeler DL.

Oncogene. 2011 Feb 3;30(5):561-74. doi: 10.1038/onc.2010.430. Epub 2010 Oct 18.

16.

The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer.

Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E, Stamp G, Behrens A, Downward J.

Cell. 2012 Apr 27;149(3):642-55. doi: 10.1016/j.cell.2012.02.059.

17.

Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer.

Molina-Arcas M, Hancock DC, Sheridan C, Kumar MS, Downward J.

Cancer Discov. 2013 May;3(5):548-63. doi: 10.1158/2159-8290.CD-12-0446. Epub 2013 Mar 1.

18.

Differential expression of RBM5, EGFR and KRAS mRNA and protein in non-small cell lung cancer tissues.

Liang H, Zhang J, Shao C, Zhao L, Xu W, Sutherland LC, Wang K.

J Exp Clin Cancer Res. 2012 Apr 26;31:36. doi: 10.1186/1756-9966-31-36.

19.

GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer.

Tessema M, Yingling CM, Snider AM, Do K, Juri DE, Picchi MA, Zhang X, Liu Y, Leng S, Tellez CS, Belinsky SA.

J Thorac Oncol. 2014 Jun;9(6):784-93. doi: 10.1097/JTO.0000000000000165.

20.

Supplemental Content

Support Center