Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 179

1.

Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed.

Kumar V, Sangwan P, Verma AK, Agrawal S.

Appl Biochem Biotechnol. 2014 May;173(2):646-59. doi: 10.1007/s12010-014-0871-9. Epub 2014 Apr 1.

PMID:
24687556
2.

Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.

Nam SJ, Kim YO, Ko TK, Kang JK, Chun KH, Auh JH, Lee CS, Lee IK, Park S, Oh BC.

J Microbiol Biotechnol. 2014 Oct;24(10):1413-20.

3.

The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization.

Borgi MA, Khila M, Boudebbouze S, Aghajari N, Szukala F, Pons N, Maguin E, Rhimi M.

Appl Microbiol Biotechnol. 2014 Jul;98(13):5937-47. doi: 10.1007/s00253-013-5421-9. Epub 2013 Dec 13. Erratum in: Appl Microbiol Biotechnol. 2014 Jul;98(13):6161. Khila, Mouna [added].

PMID:
24337251
4.

A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive.

Huang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, Zhan Z, Yao B.

Appl Microbiol Biotechnol. 2009 May;83(2):249-59. doi: 10.1007/s00253-008-1835-1. Epub 2009 Jan 13.

PMID:
19139877
5.

A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris.

Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V.

J Microbiol. 2011 Apr;49(2):257-64. doi: 10.1007/s12275-011-0369-x. Epub 2011 May 3.

PMID:
21538247
6.

Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability.

Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R.

J Inorg Biochem. 2011 Jul;105(7):1000-7. doi: 10.1016/j.jinorgbio.2011.04.005. Epub 2011 Apr 21.

PMID:
21569752
7.

Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH.

Tan H, Wu X, Xie L, Huang Z, Gan B, Peng W.

J Microbiol Biotechnol. 2015 Jun;25(6):930-5.

8.

The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency.

Li Z, Huang H, Yang P, Yuan T, Shi P, Zhao J, Meng K, Yao B.

FEBS J. 2011 Sep;278(17):3032-40. doi: 10.1111/j.1742-4658.2011.08223.x. Epub 2011 Jul 26. Erratum in: FEBS J. 2013 Apr;280(8):1869.

9.

Purification and characterization of a thermostable extracellular phytase from Bacillus licheniformis PFBL-03.

Fasimoye FO, Olajuyigbe FM, Sanni MD.

Prep Biochem Biotechnol. 2014;44(2):193-205. doi: 10.1080/10826068.2013.812565.

PMID:
24152104
10.

Comparative studies on the in vitro properties of phytases from various microbial origins.

Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O.

Arch Tierernahr. 2000;53(4):353-73.

PMID:
11195907
11.

Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

Tran TT, Mamo G, Búxo L, Le NN, Gaber Y, Mattiasson B, Hatti-Kaul R.

Enzyme Microb Technol. 2011 Jul 10;49(2):177-82. doi: 10.1016/j.enzmictec.2011.05.012. Epub 2011 May 27.

PMID:
22112406
12.

Bacillus phytases: Current status and future prospects.

Borgi MA, Boudebbouze S, Mkaouar H, Maguin E, Rhimi M.

Bioengineered. 2015;6(4):233-6. doi: 10.1080/21655979.2015.1048050. Epub 2015 May 6. Review.

13.

Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies.

Rao DE, Rao KV, Reddy VD.

J Appl Microbiol. 2008 Oct;105(4):1128-37. doi: 10.1111/j.1365-2672.2008.03833.x. Epub 2008 May 13.

14.

A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions.

Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, Yang P, Yao B.

Appl Microbiol Biotechnol. 2008 Sep;80(3):417-26. doi: 10.1007/s00253-008-1556-5. Epub 2008 Jun 12.

PMID:
18548246
15.

Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

Xu W, Shao R, Wang Z, Yan X.

Appl Biochem Biotechnol. 2015 Mar;175(6):3184-94. doi: 10.1007/s12010-015-1495-4. Epub 2015 Jan 23.

PMID:
25613522
16.

A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli.

Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R.

J Ind Microbiol Biotechnol. 2010 Mar;37(3):279-87. doi: 10.1007/s10295-009-0671-3. Epub 2009 Dec 10.

PMID:
19997958
17.

Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic.

Yu P, Wang XT, Liu JW.

J Basic Microbiol. 2015 Aug;55(8):1029-39. doi: 10.1002/jobm.201400865. Epub 2015 Mar 2.

PMID:
25727311
18.

Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115.

Zhang R, Yang P, Huang H, Yuan T, Shi P, Meng K, Yao B.

Appl Microbiol Biotechnol. 2011 Oct;92(2):317-25. doi: 10.1007/s00253-011-3309-0. Epub 2011 May 12.

PMID:
21562981
19.

Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

Reddy CS, Achary VM, Manna M, Singh J, Kaul T, Reddy MK.

Appl Biochem Biotechnol. 2015 Mar;175(6):3058-67. doi: 10.1007/s12010-015-1487-4. Epub 2015 Jan 15.

PMID:
25588529
20.

Properties of beta-propeller phytase expressed in transgenic tobacco.

Chan WL, Lung SC, Lim BL.

Protein Expr Purif. 2006 Mar;46(1):100-6. Epub 2005 Aug 15.

PMID:
16137892

Supplemental Content

Support Center