Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolás C.

Mol Plant Pathol. 2014 Oct;15(8):823-31. doi: 10.1111/mpp.12141. Epub 2014 May 7.

PMID:
24684632
2.

The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots.

Ralhan A, Schöttle S, Thurow C, Iven T, Feussner I, Polle A, Gatz C.

Plant Physiol. 2012 Jul;159(3):1192-203. doi: 10.1104/pp.112.198598. Epub 2012 May 25.

3.

Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum.

Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C.

J Plant Physiol. 2012 Apr 15;169(6):614-20. doi: 10.1016/j.jplph.2011.12.016. Epub 2012 Feb 7.

PMID:
22317785
4.

Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum.

Chacón MR, Rodríguez-Galán O, Benítez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J.

Int Microbiol. 2007 Mar;10(1):19-27.

5.

Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle.

Léon-Kloosterziel KM, Verhagen BW, Keurentjes JJ, VanPelt JA, Rep M, VanLoon LC, Pieterse CM.

Plant Mol Biol. 2005 Mar;57(5):731-48.

PMID:
15988566
6.

Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

Leonetti P, Zonno MC, Molinari S, Altomare C.

Plant Cell Rep. 2017 Apr;36(4):621-631. doi: 10.1007/s00299-017-2109-0. Epub 2017 Feb 26.

PMID:
28239746
7.
8.

MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe.

Segarra G, Van der Ent S, Trillas I, Pieterse CM.

Plant Biol (Stuttg). 2009 Jan;11(1):90-6. doi: 10.1111/j.1438-8677.2008.00162.x.

PMID:
19121118
9.

Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses.

Velazquez-Robledo R, Contreras-Cornejo HA, Macias-Rodriguez L, Hernandez-Morales A, Aguirre J, Casas-Flores S, Lopez-Bucio J, Herrera-Estrella A.

Mol Plant Microbe Interact. 2011 Dec;24(12):1459-71. doi: 10.1094/MPMI-02-11-0045.

10.

Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78.

Martínez-Medina A, Appels FVW, van Wees SCM.

Plant Signal Behav. 2017 Jul 10:e1345404. doi: 10.1080/15592324.2017.1345404. [Epub ahead of print]

PMID:
28692334
11.

Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana.

Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A.

Microbiology. 2012 Jan;158(Pt 1):139-46. doi: 10.1099/mic.0.052621-0. Epub 2011 Aug 18.

PMID:
21852347
12.

Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species.

Salazar-Badillo FB, Sánchez-Rangel D, Becerra-Flora A, López-Gómez M, Nieto-Jacobo F, Mendoza-Mendoza A, Jiménez-Bremont JF.

Plant Physiol Biochem. 2015 Oct;95:49-56. doi: 10.1016/j.plaphy.2015.07.003. Epub 2015 Jul 6.

PMID:
26186363
13.

Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J.

Mol Plant Microbe Interact. 2014 Jun;27(6):503-14. doi: 10.1094/MPMI-09-13-0265-R.

14.

Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes.

Molinari S, Fanelli E, Leonetti P.

Mol Plant Pathol. 2014 Apr;15(3):255-64. doi: 10.1111/mpp.12085. Epub 2013 Dec 5.

PMID:
24118790
15.

Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica.

Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schäfer P.

Plant Physiol. 2011 Jun;156(2):726-40. doi: 10.1104/pp.111.176446. Epub 2011 Apr 7. Erratum in: Plant Physiol. 2011 Sep;157(1):531. Likpa, Volker [corrected to Lipka, Volker].

16.

Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.

Kravchuk Z, Vicedo B, Flors V, Camañes G, González-Bosch C, García-Agustín P.

J Plant Physiol. 2011 Mar 1;168(4):359-66. doi: 10.1016/j.jplph.2010.07.028. Epub 2010 Oct 14.

PMID:
20950893
17.

Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice.

Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M.

Pest Manag Sci. 2012 Jan;68(1):60-6. doi: 10.1002/ps.2220. Epub 2011 Jun 14.

PMID:
21674754
18.

Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.

Po-Wen C, Singh P, Zimmerli L.

Mol Plant Pathol. 2013 Jan;14(1):58-70. doi: 10.1111/j.1364-3703.2012.00827.x. Epub 2012 Sep 4.

PMID:
22947164
19.

The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen.

Degrave A, Moreau M, Launay A, Barny MA, Brisset MN, Patrit O, Taconnat L, Vedel R, Fagard M.

Mol Plant Pathol. 2013 Jun;14(5):506-17. doi: 10.1111/mpp.12022. Epub 2013 Mar 12.

PMID:
23634775
20.

Supplemental Content

Support Center