Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Protein cocrystallization molecules originating from in vitro selected macrocyclic peptides.

Hipolito CJ, Bashiruddin NK, Suga H.

Curr Opin Struct Biol. 2014 Jun;26:24-31. doi: 10.1016/j.sbi.2014.03.001. Epub 2014 Mar 27. Review.

PMID:
24681557
2.

[In Vitro Selected Macrocyclic Peptides: Tools for Regulating the Conformational Freedom of Transmembrane Proteins].

Hipolito CJ, Nishio K, Suga H.

Yakugaku Zasshi. 2016;136(2):191-6. doi: 10.1248/yakushi.15-00229-4. Review. Japanese.

3.

A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter.

Hipolito CJ, Tanaka Y, Katoh T, Nureki O, Suga H.

Molecules. 2013 Aug 30;18(9):10514-30. doi: 10.3390/molecules180910514.

4.

In vitro selection of multiple libraries created by genetic code reprogramming to discover macrocyclic peptides that antagonize VEGFR2 activity in living cells.

Kawakami T, Ishizawa T, Fujino T, Reid PC, Suga H, Murakami H.

ACS Chem Biol. 2013;8(6):1205-14. doi: 10.1021/cb300697h. Epub 2013 Apr 2.

PMID:
23517428
5.

Macrocyclic peptides self-assemble into robust vesicles with molecular recognition capabilities.

Jeong WJ, Lim YB.

Bioconjug Chem. 2014 Nov 19;25(11):1996-2003. doi: 10.1021/bc500367z. Epub 2014 Oct 7.

PMID:
25290503
6.

Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies.

Bashiruddin NK, Suga H.

Curr Opin Chem Biol. 2015 Feb;24:131-8. doi: 10.1016/j.cbpa.2014.11.011. Epub 2014 Dec 5. Review.

7.

Emerging strategies to access peptide macrocycles from genetically encoded polypeptides.

Smith JM, Frost JR, Fasan R.

J Org Chem. 2013 Apr 19;78(8):3525-31. doi: 10.1021/jo400119s. Epub 2013 Mar 29.

PMID:
23517465
8.

Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library.

Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H.

Chem Biol. 2011 Dec 23;18(12):1562-70. doi: 10.1016/j.chembiol.2011.09.013.

9.

A current perspective on applications of macrocyclic-peptide-based high-affinity ligands.

Leenheer D, Ten Dijke P, Hipolito CJ.

Biopolymers. 2016 Nov;106(6):889-900. doi: 10.1002/bip.22900. Review.

10.

A linear chain of water molecules accommodated in a macrocyclic nanotube channel.

Ono K, Tsukamoto K, Hosokawa R, Kato M, Suganuma M, Tomura M, Sako K, Taga K, Saito K.

Nano Lett. 2009 Jan;9(1):122-5. doi: 10.1021/nl802672u.

PMID:
19105739
11.

A biomimetic approach for polyfunctional secocholanes: tuning flexibility and functionality on peptidic and macrocyclic scaffolds derived from bile acids.

Rivera DG, Pando O, Bosch R, Wessjohann LA.

J Org Chem. 2008 Aug 15;73(16):6229-38. doi: 10.1021/jo800708m. Epub 2008 Jul 22.

PMID:
18642868
12.

Macrocyclic helix-threading peptides for targeting RNA.

Krishnamurthy M, Simon K, Orendt AM, Beal PA.

Angew Chem Int Ed Engl. 2007;46(37):7044-7. No abstract available.

PMID:
17691090
13.

Catecholase activity of a copper(II) complex with a macrocyclic ligand: unraveling catalytic mechanisms.

Koval IA, Selmeczi K, Belle C, Philouze C, Saint-Aman E, Gautier-Luneau I, Schuitema AM, van Vliet M, Gamez P, Roubeau O, Lüken M, Krebs B, Lutz M, Spek AL, Pierre JL, Reedijk J.

Chemistry. 2006 Aug 7;12(23):6138-50.

PMID:
16832797
14.

Macrocyclic β-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide.

Zheng J, Liu C, Sawaya MR, Vadla B, Khan S, Woods RJ, Eisenberg D, Goux WJ, Nowick JS.

J Am Chem Soc. 2011 Mar 9;133(9):3144-57. doi: 10.1021/ja110545h. Epub 2011 Feb 14. Erratum in: J Am Chem Soc. 2012 Oct 24;134(42):17832.

15.

The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds.

Malcolmson SJ, Young TS, Ruby JG, Skewes-Cox P, Walsh CT.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8483-8. doi: 10.1073/pnas.1307111110. Epub 2013 May 6.

16.

Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change.

Yamagata K, Goto Y, Nishimasu H, Morimoto J, Ishitani R, Dohmae N, Takeda N, Nagai R, Komuro I, Suga H, Nureki O.

Structure. 2014 Feb 4;22(2):345-52. doi: 10.1016/j.str.2013.12.001. Epub 2014 Jan 2.

17.

Designing scaffolds of peptides for phage display libraries.

Uchiyama F, Tanaka Y, Minari Y, Tokui N.

J Biosci Bioeng. 2005 May;99(5):448-56. Review.

PMID:
16233816
18.

Ribosomal synthesis of backbone-macrocyclic peptides containing γ-amino acids.

Ohshiro Y, Nakajima E, Goto Y, Fuse S, Takahashi T, Doi T, Suga H.

Chembiochem. 2011 May 16;12(8):1183-7. doi: 10.1002/cbic.201100104. Epub 2011 Apr 19. No abstract available.

PMID:
21506233
19.

Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds.

Walsh CT, O'Brien RV, Khosla C.

Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7098-124. doi: 10.1002/anie.201208344. Epub 2013 May 31. Review.

20.

Targeting protein-protein interfaces using macrocyclic peptides.

Gao M, Cheng K, Yin H.

Biopolymers. 2015 Jul;104(4):310-6. doi: 10.1002/bip.22625. Review.

Supplemental Content

Support Center