Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 192

1.

The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

Andrade-Silva J, Cipolla-Neto J, Peliciari-Garcia RA.

Neurosci Res. 2014 Apr-May;81-82:1-10. doi: 10.1016/j.neures.2014.03.005.

PMID:
24681283
2.

Norepinephrine activates NF-κB transcription factor in cultured rat pineal gland.

Villela D, de Sá Lima L, Peres R, Peliciari-Garcia RA, do Amaral FG, Cipolla-Neto J, Scavone C, Afeche SC.

Life Sci. 2014 Jan 17;94(2):122-9. doi: 10.1016/j.lfs.2013.11.004.

PMID:
24239639
3.

Rat photoreceptor circadian oscillator strongly relies on lighting conditions.

Sandu C, Hicks D, Felder-Schmittbuhl MP.

Eur J Neurosci. 2011 Aug;34(3):507-16. doi: 10.1111/j.1460-9568.2011.07772.x.

PMID:
21771113
4.

Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

Garcia RA, Afeche SC, Scialfa JH, do Amaral FG, dos Santos SH, Lima FB, Young ME, Cipolla-Neto J.

Life Sci. 2008 Jan 2;82(1-2):108-14.

PMID:
18048060
5.

Daily rhythm and regulation of clock gene expression in the rat pineal gland.

Simonneaux V, Poirel VJ, Garidou ML, Nguyen D, Diaz-Rodriguez E, Pévet P.

Brain Res Mol Brain Res. 2004 Jan 5;120(2):164-72.

PMID:
14741406
6.

Clock-Controlled Regulation of the Acute Effects of Norepinephrine on Chick Pineal Melatonin Rhythms.

Li Y, Cassone VM.

J Biol Rhythms. 2015 Dec;30(6):519-32. doi: 10.1177/0748730415607060.

PMID:
26446873
7.

Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine.

Wongchitrat P, Felder-Schmittbuhl MP, Phansuwan-Pujito P, Pévet P, Simonneaux V.

Eur J Neurosci. 2009 May;29(10):2009-16. doi: 10.1111/j.1460-9568.2009.06742.x.

PMID:
19453634
8.

Regulation of period 1 expression in cultured rat pineal.

Fukuhara C, Dirden JC, Tosini G.

Neurosignals. 2002 Mar-Apr;11(2):103-14.

PMID:
12077484
9.

Insulin temporal sensitivity and its signaling pathway in the rat pineal gland.

Peliciari-Garcia RA, Marçal AC, Silva JA, Carmo-Buonfiglio D, Amaral FG, Afeche SC, Cipolla-Neto J, Carvalho CR.

Life Sci. 2010 Jul 31;87(5-6):169-74. doi: 10.1016/j.lfs.2010.06.005.

PMID:
20600146
10.
11.

Comparative study of pineal clock gene and AANAT2 expression in relation to melatonin synthesis in Atlantic salmon (Salmo salar) and European seabass (Dicentrarchus labrax).

McStay E, Migaud H, Vera LM, Sánchez-Vázquez FJ, Davie A.

Comp Biochem Physiol A Mol Integr Physiol. 2014 Mar;169:77-89. doi: 10.1016/j.cbpa.2013.12.011.

PMID:
24361868
12.

A noradrenergic sensitive endogenous clock is present in the rat pineal gland.

Wongchitrat P, Felder-Schmittbuhl MP, Govitrapong P, Phansuwan-Pujito P, Simonneaux V.

Neuroendocrinology. 2011;94(1):75-83. doi: 10.1159/000327430.

PMID:
21525730
13.

Pineal melatonin synthesis is altered in Period1 deficient mice.

Christ E, Pfeffer M, Korf HW, von Gall C.

Neuroscience. 2010 Dec 1;171(2):398-406. doi: 10.1016/j.neuroscience.2010.09.009.

PMID:
20849936
14.
15.

Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice.

von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW, Stehle JH.

Eur J Neurosci. 2000 Mar;12(3):964-72.

PMID:
10762326
16.
17.

Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin.

Turkowska E, Majewski PM, Rai S, Skwarlo-Sonta K.

Chronobiol Int. 2014 Feb;31(1):134-43. doi: 10.3109/07420528.2013.832279.

PMID:
24134119
18.

Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis.

Han Y, Onori P, Meng F, DeMorrow S, Venter J, Francis H, Franchitto A, Ray D, Kennedy L, Greene J, Renzi A, Mancinelli R, Gaudio E, Glaser S, Alpini G.

Am J Physiol Gastrointest Liver Physiol. 2014 Nov 1;307(9):G894-904. doi: 10.1152/ajpgi.00288.2014.

Supplemental Content

Support Center