Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Response to comment on "Electrolytic manipulation of persulfate reactivity by iron electrodes for TCE degradation in groundwater".

Yuan S, Liao P.

Environ Sci Technol. 2014 Apr 15;48(8):4632-3. doi: 10.1021/es501323n. No abstract available.

PMID:
24679139
2.

Comment on Electrolytic manipulation of persulfate reactivity by iron electrodes for TCE degradation in groundwater.

Zou J, Ma J, Zhang J.

Environ Sci Technol. 2014 Apr 15;48(8):4630-1. doi: 10.1021/es501061n. No abstract available.

PMID:
24679118
3.

Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater.

Yuan S, Liao P, Alshawabkeh AN.

Environ Sci Technol. 2014;48(1):656-63. doi: 10.1021/es404535q.

4.

Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

Fallahpour N, Yuan S, Rajic L, Alshawabkeh AN.

Chemosphere. 2016 Feb;144:59-64. doi: 10.1016/j.chemosphere.2015.08.037.

PMID:
26344148
5.

Persulfate oxidation of trichloroethylene with and without iron activation in porous media.

Liang C, Lee IL, Hsu IY, Liang CP, Lin YL.

Chemosphere. 2008 Jan;70(3):426-35.

PMID:
17692892
6.
7.

Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.

Zhang W, Li L, Lin K, Xiong B, Li B, Lu S, Guo M, Cui X.

Water Sci Technol. 2012;65(12):2258-64. doi: 10.2166/wst.2012.146.

PMID:
22643424
8.

Influence of pH on persulfate oxidation of TCE at ambient temperatures.

Liang C, Wang ZS, Bruell CJ.

Chemosphere. 2007 Jan;66(1):106-13.

PMID:
16814844
9.

A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.

Yuan S, Chen M, Mao X, Alshawabkeh AN.

Water Res. 2013 Jan 1;47(1):269-78. doi: 10.1016/j.watres.2012.10.009.

10.

Pd-catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual-anode system.

Xie S, Yuan S, Liao P, Jia M, Wang Y.

Water Res. 2015 Dec 1;86:74-81. doi: 10.1016/j.watres.2015.07.026.

PMID:
26212567
11.

Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.

Kaifas D, Malleret L, Kumar N, F├ętimi W, Claeys-Bruno M, Sergent M, Doumenq P.

Sci Total Environ. 2014 May 15;481:335-42. doi: 10.1016/j.scitotenv.2014.02.043.

PMID:
24607397
12.

The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

Rajic L, Fallahpour N, Podlaha E, Alshawabkeh A.

Chemosphere. 2016 Mar;147:98-104. doi: 10.1016/j.chemosphere.2015.12.095.

PMID:
26761603
13.

Dehalogenation of trichloroethylene in microbial electrolysis cells with biogenic palladium nanoparticles.

Hennebel T, De Gusseme B, Soetaert M, De Corte S, De Sloover J, Verstraete W, Boon N.

Commun Agric Appl Biol Sci. 2011;76(2):59-61. No abstract available.

PMID:
21404936
14.

Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE).

Lee T, Benson CH, Eykholt GR.

J Hazard Mater. 2004 Jun 18;109(1-3):25-36.

PMID:
15177742
15.

Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C.

Liang C, Wang ZS, Mohanty N.

Sci Total Environ. 2006 Nov 1;370(2-3):271-7.

PMID:
17014891
16.

Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

Tsai TT, Kao CM, Wang JY.

Chemosphere. 2011 Apr;83(5):687-92. doi: 10.1016/j.chemosphere.2011.02.023.

PMID:
21377186
17.
18.
19.
20.

In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

Liang C, Lee IL.

J Contam Hydrol. 2008 Sep 10;100(3-4):91-100. doi: 10.1016/j.jconhyd.2008.05.012.

PMID:
18649972
Items per page

Supplemental Content

Support Center