Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Loads bias genetic and signaling switches in synthetic and natural systems.

Lyons SM, Xu W, Medford J, Prasad A.

PLoS Comput Biol. 2014 Mar 27;10(3):e1003533. doi: 10.1371/journal.pcbi.1003533. eCollection 2014 Mar.

2.

Functional tunability of biological circuits from additional toggle switches.

Shi C, Zhou T, Yuan Z.

IET Syst Biol. 2013 Oct;7(5):126-34. doi: 10.1049/iet-syb.2012.0056.

PMID:
24067412
3.

Hypothetical biomolecular probe based on a genetic switch with tunable symmetry and stability.

Martyushenko N, Johansen SH, Ghim CM, Almaas E.

BMC Syst Biol. 2016 Jun 6;10(1):39. doi: 10.1186/s12918-016-0279-y.

4.

Modular composition of gene transcription networks.

Gyorgy A, Del Vecchio D.

PLoS Comput Biol. 2014 Mar 13;10(3):e1003486. doi: 10.1371/journal.pcbi.1003486. eCollection 2014 Mar.

5.

Coupling oscillations and switches in genetic networks.

Gonze D.

Biosystems. 2010 Jan;99(1):60-9. doi: 10.1016/j.biosystems.2009.08.009. Epub 2009 Sep 6.

PMID:
19735694
6.

Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling.

Zhang XP, Cheng Z, Liu F, Wang W.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031924. Epub 2007 Sep 27.

PMID:
17930288
7.
8.

Construction of an in vitro bistable circuit from synthetic transcriptional switches.

Kim J, White KS, Winfree E.

Mol Syst Biol. 2006;2:68. Epub 2006 Dec 12.

9.

Mapping network motif tunability and robustness in the design of synthetic signaling circuits.

Iadevaia S, Nakhleh LK, Azencott R, Ram PT.

PLoS One. 2014 Mar 18;9(3):e91743. doi: 10.1371/journal.pone.0091743. eCollection 2014.

10.

Synthetic conversion of a graded receptor signal into a tunable, reversible switch.

Palani S, Sarkar CA.

Mol Syst Biol. 2011 Mar 29;7:480. doi: 10.1038/msb.2011.13.

11.

Design of genetic switches with only positive feedback loops.

Kobayashi T, Chen L, Aihara K.

Proc IEEE Comput Soc Bioinform Conf. 2002;1:151-62.

PMID:
15838132
12.

Design principles of a genetic alarm clock.

Albert J, Rooman M.

PLoS One. 2012;7(11):e47256. doi: 10.1371/journal.pone.0047256. Epub 2012 Nov 7.

13.

Robust, tunable genetic memory from protein sequestration combined with positive feedback.

Shopera T, Henson WR, Ng A, Lee YJ, Ng K, Moon TS.

Nucleic Acids Res. 2015 Oct 15;43(18):9086-94. doi: 10.1093/nar/gkv936. Epub 2015 Sep 17.

14.

Colored Noise Induced Bistable Switch in the Genetic Toggle Switch Systems.

Wang P, Lü J, Yu X.

IEEE/ACM Trans Comput Biol Bioinform. 2015 May-Jun;12(3):579-89. doi: 10.1109/TCBB.2014.2368982.

PMID:
26357269
15.

Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

Gupta C, López JM, Azencott R, Bennett MR, Josić K, Ott W.

J Chem Phys. 2014 May 28;140(20):204108. doi: 10.1063/1.4878662.

16.

A physical analogy of the genetic toggle switch.

Andrecut M, Kauffman SA.

J Comput Biol. 2007 Sep;14(7):973-83.

PMID:
17803374
17.

Mammalian synthetic biology: engineering of sophisticated gene networks.

Greber D, Fussenegger M.

J Biotechnol. 2007 Jul 15;130(4):329-45. Epub 2007 May 24. Review.

PMID:
17602777
18.

Build to understand: synthetic approaches to biology.

Wang LZ, Wu F, Flores K, Lai YC, Wang X.

Integr Biol (Camb). 2016 Apr 18;8(4):394-408. doi: 10.1039/c5ib00252d. Epub 2015 Dec 21. Review.

19.

Robust model matching design methodology for a stochastic synthetic gene network.

Chen BS, Chang CH, Wang YC, Wu CH, Lee HC.

Math Biosci. 2011 Mar;230(1):23-36. doi: 10.1016/j.mbs.2010.12.007. Epub 2011 Jan 6.

PMID:
21215760
20.

Synthetic in vitro transcriptional oscillators.

Kim J, Winfree E.

Mol Syst Biol. 2011 Feb 1;7:465. doi: 10.1038/msb.2010.119.

Supplemental Content

Support Center