Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Rate coefficients of C(1) and C(2) Criegee intermediate reactions with formic and acetic Acid near the collision limit: direct kinetics measurements and atmospheric implications.

Welz O, Eskola AJ, Sheps L, Rotavera B, Savee JD, Scheer AM, Osborn DL, Lowe D, Murray Booth A, Xiao P, Anwar H Khan M, Percival CJ, Shallcross DE, Taatjes CA.

Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4547-50. doi: 10.1002/anie.201400964. Epub 2014 Mar 25.

2.

Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂.

Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA.

Science. 2012 Jan 13;335(6065):204-7. doi: 10.1126/science.1213229.

3.

Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

Foreman ES, Kapnas KM, Murray C.

Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10419-22. doi: 10.1002/anie.201604662. Epub 2016 Jul 21.

PMID:
27440012
4.

Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

Huang HL, Chao W, Lin JJ.

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10857-62. doi: 10.1073/pnas.1513149112. Epub 2015 Aug 17.

5.

Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.

Zhong J, Kumar M, Zhu CQ, Francisco JS, Zeng XC.

Angew Chem Int Ed Engl. 2017 Jun 26;56(27):7740-7744. doi: 10.1002/anie.201702722. Epub 2017 May 4.

PMID:
28471069
6.

Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.

Lee YP.

J Chem Phys. 2015 Jul 14;143(2):020901. doi: 10.1063/1.4923165.

PMID:
26178082
7.

Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)2COO.

Chhantyal-Pun R, Welz O, Savee JD, Eskola AJ, Lee EP, Blacker L, Hill HR, Ashcroft M, Khan MA, Lloyd-Jones GC, Evans L, Rotavera B, Huang H, Osborn DL, Mok DK, Dyke JM, Shallcross DE, Percival CJ, Orr-Ewing AJ, Taatjes CA.

J Phys Chem A. 2017 Jan 12;121(1):4-15. doi: 10.1021/acs.jpca.6b07810. Epub 2016 Dec 22.

PMID:
27755879
8.

Temperature-Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates.

Chhantyal-Pun R, McGillen MR, Beames JM, Khan MAH, Percival CJ, Shallcross DE, Orr-Ewing AJ.

Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9044-9047. doi: 10.1002/anie.201703700. Epub 2017 Jun 29.

9.

Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.

Taatjes CA, Welz O, Eskola AJ, Savee JD, Osborn DL, Lee EP, Dyke JM, Mok DW, Shallcross DE, Percival CJ.

Phys Chem Chem Phys. 2012 Aug 14;14(30):10391-400. doi: 10.1039/c2cp40294g. Epub 2012 Apr 5.

PMID:
22481381
10.

Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods.

Jr-Min Lin J, Chao W.

Chem Soc Rev. 2017 Aug 25. doi: 10.1039/c7cs00336f. [Epub ahead of print]

PMID:
28840926
11.

Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

Percival CJ, Welz O, Eskola AJ, Savee JD, Osborn DL, Topping DO, Lowe D, Utembe SR, Bacak A, McFiggans G, Cooke MC, Xiao P, Archibald AT, Jenkin ME, Derwent RG, Riipinen I, Mok DW, Lee EP, Dyke JM, Taatjes CA, Shallcross DE.

Faraday Discuss. 2013;165:45-73.

PMID:
24600996
12.

Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.

Womack CC, Martin-Drumel MA, Brown GG, Field RW, McCarthy MC.

Sci Adv. 2015 Mar 6;1(2):e1400105. doi: 10.1126/sciadv.1400105. eCollection 2015 Mar.

13.

The reaction of Criegee intermediate CH2OO with water dimer: primary products and atmospheric impact.

Sheps L, Rotavera B, Eskola AJ, Osborn DL, Taatjes CA, Au K, Shallcross DE, Khan MAH, Percival CJ.

Phys Chem Chem Phys. 2017 Aug 23;19(33):21970-21979. doi: 10.1039/c7cp03265j.

PMID:
28805226
14.

Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate.

Buras ZJ, Elsamra RM, Green WH.

J Phys Chem Lett. 2014 Jul 3;5(13):2224-8. doi: 10.1021/jz5008406. Epub 2014 Jun 13.

PMID:
26279538
15.

Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry.

Berndt T, Herrmann H, Kurtén T.

J Am Chem Soc. 2017 Sep 27;139(38):13387-13392. doi: 10.1021/jacs.7b05849. Epub 2017 Sep 14.

PMID:
28853879
16.

Direct observation of the gas-phase Criegee intermediate (CH2OO).

Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL, Percival CJ, Shallcross DE.

J Am Chem Soc. 2008 Sep 10;130(36):11883-5. doi: 10.1021/ja804165q. Epub 2008 Aug 15.

PMID:
18702490
17.

Spectroscopic Characterization of the Reaction Products between the Criegee Intermediate CH2 OO and HCl.

Cabezas C, Endo Y.

Chemphyschem. 2017 Jul 19;18(14):1860-1863. doi: 10.1002/cphc.201700446. Epub 2017 May 15.

PMID:
28449411
18.

Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.

Fang Y, Liu F, Barber VP, Klippenstein SJ, McCoy AB, Lester MI.

J Chem Phys. 2016 Feb 14;144(6):061102. doi: 10.1063/1.4941768.

PMID:
26874475
19.

Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry.

Su YT, Lin HY, Putikam R, Matsui H, Lin MC, Lee YP.

Nat Chem. 2014 Jun;6(6):477-83. doi: 10.1038/nchem.1890. Epub 2014 Mar 23.

PMID:
24848232
20.

Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.

Buras ZJ, Elsamra RM, Jalan A, Middaugh JE, Green WH.

J Phys Chem A. 2014 Mar 20;118(11):1997-2006. doi: 10.1021/jp4118985. Epub 2014 Mar 6.

PMID:
24559303

Supplemental Content

Support Center