Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

The effect of dye coverage on the performance of dye-sensitized solar cells with a cobalt-based electrolyte.

Pazoki M, Lohse PW, Taghavinia N, Hagfeldt A, Boschloo G.

Phys Chem Chem Phys. 2014 May 14;16(18):8503-8. doi: 10.1039/c4cp00335g.

PMID:
24668285
2.

Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells.

Hara K, Dan-oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H.

Langmuir. 2004 May 11;20(10):4205-10.

PMID:
15969418
3.

On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells.

Johansson V, Ellis-Gibbings L, Clarke T, Gorlov M, Andersson GG, Kloo L.

Phys Chem Chem Phys. 2014 Jan 14;16(2):711-8. doi: 10.1039/c3cp52486h.

PMID:
24263223
4.

Modification of TiO₂ electrode with organic silane interposed layer for high-performance of dye-sensitized solar cells.

Sewvandi GA, Tao Z, Kusunose T, Tanaka Y, Nakanishi S, Feng Q.

ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5818-26. doi: 10.1021/am500666e.

PMID:
24684283
5.

Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell.

Lee S, Kim JY, Youn SH, Park M, Hong KS, Jung HS, Lee JK, Shin H.

Langmuir. 2007 Nov 6;23(23):11907-10.

PMID:
17927224
6.

Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

Venkatesan S, Liu IP, Chen LT, Hou YC, Li CW, Lee YL.

ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24559-66. doi: 10.1021/acsami.6b06429.

PMID:
27563731
7.

Effect of TiO₂ microbead pore size on the performance of DSSCs with a cobalt based electrolyte.

Chen Y, Huang F, Xiang W, Chen D, Cao L, Spiccia L, Caruso RA, Cheng YB.

Nanoscale. 2014 Nov 21;6(22):13787-94. doi: 10.1039/c4nr04436c.

PMID:
25287230
8.

Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

Higashino T, Kawamoto K, Sugiura K, Fujimori Y, Tsuji Y, Kurotobi K, Ito S, Imahori H.

ACS Appl Mater Interfaces. 2016 Jun 22;8(24):15379-90. doi: 10.1021/acsami.6b03806.

PMID:
27267428
9.

Structural effect of donor in organic dye on recombination in dye-sensitized solar cells with cobalt complex electrolyte.

Murakami TN, Koumura N, Kimura M, Mori S.

Langmuir. 2014 Mar 4;30(8):2274-9. doi: 10.1021/la4047808.

PMID:
24533669
10.

Reducing mass-transport limitations in cobalt-electrolyte-based dye-sensitized solar cells by photoanode modification.

Trang Pham TT, Koh TM, Nonomura K, Lam YM, Mathews N, Mhaisalkar S.

Chemphyschem. 2014 Apr 14;15(6):1216-21. doi: 10.1002/cphc.201301056.

PMID:
24700638
11.

Triphenylamine groups improve blocking behavior of phenoxazine dyes in cobalt-electrolyte-based dye-sensitized solar cells.

Hao Y, Tian H, Cong J, Yang W, Bora I, Sun L, Boschloo G, Hagfeldt A.

Chemphyschem. 2014 Nov 10;15(16):3476-83. doi: 10.1002/cphc.201402474.

PMID:
25123399
12.

Molecular degradation of D35 and K77 sensitizers when exposed to temperatures exceeding 100 °C investigated by photoelectron spectroscopy.

Oscarsson J, Fredin K, Ahmadi S, Eriksson AI, Johansson EM, Rensmo H.

Phys Chem Chem Phys. 2016 Mar 28;18(12):8598-607. doi: 10.1039/c5cp07921g.

PMID:
26949128
13.

Avoiding diffusion limitations in cobalt(III/II)-tris(2,2'-bipyridine)-based dye-sensitized solar cells by tuning the mesoporous TiO2 film properties.

Tsao HN, Comte P, Yi C, Grätzel M.

Chemphyschem. 2012 Aug 27;13(12):2976-81. doi: 10.1002/cphc.201200435.

PMID:
22855412
14.

Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte.

Fan J, Fàbrega C, Zamani RR, Hao Y, Parra A, Andreu T, Arbiol J, Boschloo G, Hagfeldt A, Morante JR, Cabot A.

ACS Appl Mater Interfaces. 2013 Oct 23;5(20):9872-7. doi: 10.1021/am402344d.

PMID:
24025444
15.

Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory.

Feldt SM, Lohse PW, Kessler F, Nazeeruddin MK, Grätzel M, Boschloo G, Hagfeldt A.

Phys Chem Chem Phys. 2013 May 21;15(19):7087-97. doi: 10.1039/c3cp50997d.

PMID:
23552732
16.

Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell.

Habibi MH, Karimi B, Zendehdel M, Habibi M.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec;116:374-80. doi: 10.1016/j.saa.2013.07.046.

PMID:
23973582
17.

Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study.

Mosconi E, Yum JH, Kessler F, Gómez García CJ, Zuccaccia C, Cinti A, Nazeeruddin MK, Grätzel M, De Angelis F.

J Am Chem Soc. 2012 Nov 28;134(47):19438-53. doi: 10.1021/ja3079016.

PMID:
23113640
18.

Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films.

Wang ZS, Yamaguchi T, Sugihara H, Arakawa H.

Langmuir. 2005 May 10;21(10):4272-6.

PMID:
16032834
19.

Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells.

Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M.

Nano Lett. 2005 Sep;5(9):1789-92.

PMID:
16159225
20.

Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.

Ahn JY, Moon KJ, Kim JH, Lee SH, Kang JW, Lee HW, Kim SH.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):903-9. doi: 10.1021/am4041866.

PMID:
24377279
Items per page

Supplemental Content

Support Center